P9 - Introduction à l'électromagnétisme - TD Corrigé

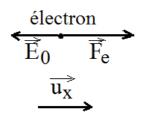
Exercice 1 Atome de soufre et ion sulfure

1) L'atome contient 16 protons, 16 neutrons et 16 électrons. Sa charge électrique est nulle (autant de protons chargés +e que d'électrons chargés -e)

2) S: $1s^2 2s^2 2p^6 3s^2 3p^4$ forme S²- qui possède la configuration d'un gaz noble. Sa charge vaut -2e = -3,2.10⁻¹⁹ C

Exercice 2 Accélérateur d'électrons

1) On souhaite une accélération \vec{a} dirigée selon \vec{u}_x $\vec{F}_e = m\vec{a} \quad \text{donc} \quad \vec{F}_e \quad \text{doit être dirigée selon} \quad \vec{u}_x$ $\vec{F}_e = -e\vec{E}_0 \quad \text{pour l'électron dans ce champ, donc} \quad \vec{E}_0 \quad \text{doit être dirigé selon} \quad -\vec{u}_x$



2)
$$\vec{E}_0 = -E_0 \vec{u}_x$$

3)
$$\|\vec{P}\| = m_e g = 8,9.10^{-30} \, N$$
 $\|\vec{F}_e\| = e \, E_0 = 1,6.10^{-15} \, N$, le poids est négligeable par rapport à $\|\vec{F}_e\|$

4) Système : électron Référentiel terrestre supposé galiléen Forces extérieures : $\vec{F}_e = -e \vec{E} = +e E_0 \vec{u}_x$ (on néglige le poids)

PFD en projection sur
$$\overrightarrow{u_x}$$
: $m_e \ddot{x} = e E_0 \implies \dot{x} = \frac{e E_0}{m} t + K_1$ vitesse initiale nulle => $K_1 = 0$
=> $x(t) = \frac{e E_0}{m} \frac{t^2}{2} + K_2$ $\grave{a} t = 0$ on $a x = 0 => K_2 = 0$

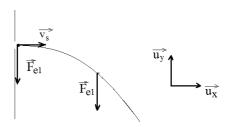
Finalement
$$x(t) = \frac{e E_0}{m} \frac{t^2}{2}$$

5) On détermine l'instant
$$t_s$$
 où l'électron atteint la sortie : $x(t_s) = L \iff \frac{e E_0}{m} \frac{t_s^2}{2} = L \iff t_s = \sqrt{\frac{2 m L}{e E_0}}$

A cet instant,
$$\dot{x}(t_s) = \frac{e E_0}{m} \sqrt{\frac{2 m L}{e E_0}} = \sqrt{\frac{2 L e E_0}{m}} = 3.8.10^7 \text{ m. s}^{-1}$$

6) A la sortie de l'accélérateur, l'électron subit seulement la force $\vec{F}_{e1} = -e \, \vec{E}_1 = -e \, \vec{E}_1 \vec{u}_y$ avec $E_1 > 0$

La vitesse initiale \overrightarrow{V}_s de l'électron est selon \overrightarrow{u}_x , et l'électron subit une force constante dirigée selon $-\overrightarrow{u}_y$: par analogie avec une chute libre (avec une vitesse initiale horizontale), on peut prédire une trajectoire parabolique.



Exercice 3 Orientation des lignes de champ électrique

1^{er} cas : Négative 2ème cas : positive

3ème cas : positive à gauche et négative à droite

Exercice 4 Champ électrique dans un atome

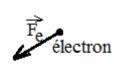
1) Z(H) = 1 donc le noyau contient 1 proton, $Q = +e = 1,6.10^{-19}$ C

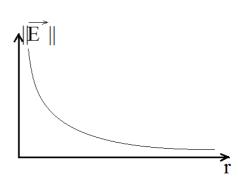
$$2) \quad \vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \vec{u}_r$$

3) voir ci-contre

4)
$$\|\vec{E}\| = 5.8.10^{11} \,\mathrm{V.m}^{-1}$$

5) voir ci-contre





Exercice 5 Forces dans un condensateur

1)
$$\sigma_1 = \frac{Q}{S} = \frac{CU}{S} = \frac{10.10^{-9} \times 2.0}{1.10^{-4}} = 2.10^{-4} \text{ C.m}^{-2}$$
 $\sigma_2 = \frac{-Q}{S} = -\sigma_1 = -2.10^{-4} \text{ C.m}^{-2}$

$$\sigma_2 = \frac{-Q}{S} = -\sigma_1 = -2.10^{-4} \,\mathrm{C.m}^{-2}$$

$$2\) \quad \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \vec{u}_r \quad \text{pour une charge ponctuelle. Analyse dimensionnelle}: \quad V.m^{-1} = \frac{1}{F.m^{-1}} C.m^{-2}$$

$$[\sigma] = [Q]/[S] = C.m^{-2} \text{ donc l'expression c) convient}: \quad \overrightarrow{E}_1(M) = \frac{\sigma_1}{2\varepsilon_0} \overrightarrow{u}_x \quad \text{donne bien} \quad V.m^{-1} = \frac{C.m^{-2}}{F.m^{-1}}$$

3) On a
$$x_H > 0$$
 donc $\|\overrightarrow{E_1}(H)\| = \frac{|\sigma_1|}{2\epsilon_0} = 1,1.10^7 \text{ V} \cdot \text{m}^{-1}$

4) L'armature 2 porte une charge -Q ; tous ses points sont soumis au même champ électrique
$$\overrightarrow{E_1}(H)$$
 créé par l'armature 1. La force électrique subie par l'armature 2 vaut $\overrightarrow{F_{e,1 \to 2}} = -Q \, \overrightarrow{E_1}(H) = -Q \, \frac{\sigma_1}{2 \, \varepsilon_0} \, \overrightarrow{u_x}$

Elle a pour valeur $\|\overrightarrow{F_{e,1\rightarrow2}}\| = Q\|\overrightarrow{E_1}(H)\| = 0.22 \text{ N}$ et elle est dirigée selon $-\overrightarrow{u_x}$ (force attractive : on pouvait le prévoir, car les charges portées par les deux armatures sont opposées).

Exercice 6 Utilisation de la relation $\vec{E} = -grad V$

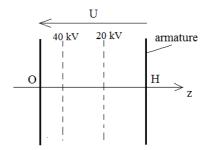
- 1) Les expressions $V_2(r)$ et $V_4(r)$ conviennent.
- 2) Les équipotentielles sont telles que $\frac{1}{4\pi\epsilon_0}\frac{Q}{r} = cste$ donc telles que r = cste en coordonnées sphériques, ce sont donc des sphères.

Exercice 7 Accélérateur de particules

1)
$$\vec{E}(M) = -\overrightarrow{grad} V = E_0 \vec{u}_z \implies \frac{-dV}{dz} = E_0 \implies V(z) = -E_0 z + K$$

Au point H, $V(d) = 0 = -E_0 d + K$ donc $K = E_0 d \implies V(z) = E_0 (d - z)$

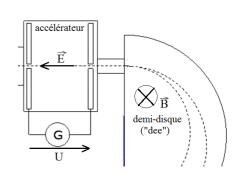
2) $U = V_0 - V_H = E_0 d$



- 3) voir ci-contre
- 4) Pour éviter l'apparition d'arcs électriques, on doit respecter $E_0 < E_{max} <=> E_0 . d < E_{max} . d <=> d > \frac{V_H}{F}$ donc $d_{min} = \frac{V_H}{E_{...}} = 1,4.10^{-2} \,\mathrm{m}$

Exercice 8 Séparation d'isotopes

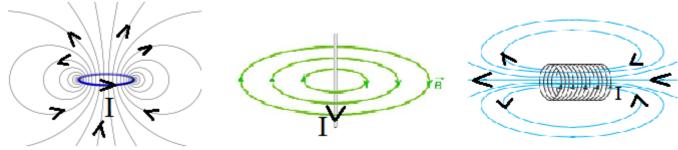
- 1) La charge q des ions est négative et la force $\vec{F}_e = q\vec{E}$ doit être orientée vers la droite, donc \vec{E} est orienté vers la gauche. Le champ \vec{E} est dirigé vers les potentiels décroissants, on en déduit l'orientation de U.
- 2) $\vec{F}_m = q \vec{v} \wedge \vec{B}$, avec q < 0 on en déduit l'orientation de \vec{B}



Exercice 9 Champ électrique ou champ magnétique ?

2.4 : électrique 1.3.5.6 : magnétique (lignes fermées)

Exercice 10 Orientation de I et des lignes de champ



Exercice 11 Expérience d'Oersted

1) Règle de la main droite : la champ est dirigé vers le haut sur le schéma, donc vers l'ouest.

2)
$$\tan \alpha = \frac{\|\overrightarrow{B_{fil}}\|}{\|\overrightarrow{B_h}\|}$$

3)
$$\|\overrightarrow{B}_{fil}\| = \frac{\mu_0 I}{2\pi d}$$
 d'où $\|\overrightarrow{B}_h\| = \frac{\|\overrightarrow{B}_{fil}\|}{\tan \alpha} = \frac{\mu_0 I}{2\pi d \tan \alpha} = 2.10^{-5} \text{ T}$

4) Pour I = 7,0 A on a
$$\|\vec{B}_{fil}\| = 7.10^{-5} \text{ T}$$
 et $\alpha = \arctan\left(\frac{\|\vec{B}_{fil}\|}{\|\vec{B}_h\|}\right) = 74^{\circ}$

Lorsque I devient très élevé, α tend vers 90° ($\|\overrightarrow{B_h}\|$ devient négligeable)

Exercice 12 Electroaimant

1)
$$\|\vec{B}\| = \mu_0 \frac{N}{l} I \simeq \mu_0 \cdot \frac{10}{0.01} \cdot 2 = 2,5.10^{-3} \text{ T}$$

2) Avec le noyau on trouve $\|\vec{B}\| = \mu \frac{N}{l} I \simeq 1 \text{ T}$, le champ créé est beaucoup plus intense avec le noyau.

Exercice 13 Sources de champ électrique et de champ magnétique

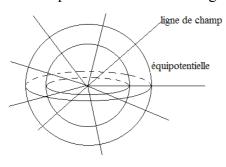
- a) source de champ électrique
- b) source de champ magnétique
- c) source de champ électrique
- d) source de champ électrique et de champ magnétique

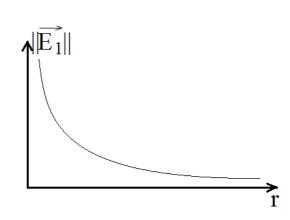
Corrigé

Exercice 14 Potentiel électrostatique

1)
$$\vec{E}_1 = -\overrightarrow{\text{grad}} V_1 = -\left(\frac{-1}{4\pi\epsilon_0} \frac{Q}{r^2} \vec{u}_r\right) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \vec{u}_r$$

2) Equation d'une équipotentielle : V = cste <=> r = cste, les équipotentielles sont des sphères centrées sur l'origine.





3) Le noyau ${}_{6}^{13}$ C contient 6 protons, sa charge vaut Q = 6.e

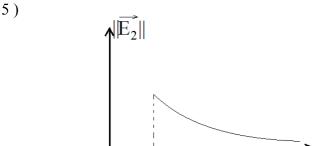
Le noyau $^{13}_{7}$ N contient 7 protons, sa charge vaut Q = 7.e Les deux noyaux ne possèdent pas la même charge.

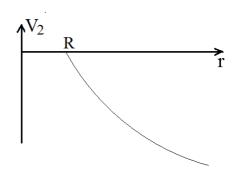
4)
$$\vec{E}_2 = -\overrightarrow{\text{grad}} V_2 \iff \frac{Q}{2 \epsilon_0 r L} \vec{u}_r = -\frac{\partial V_2}{\partial r} \vec{u}_r - \frac{1}{r} \frac{\partial V_2}{\partial \theta} \vec{u}_\theta - \frac{\partial V_2}{\partial z} \vec{u}_z$$

On en déduit $\frac{\partial V_2}{\partial \theta} = 0$ et $\frac{\partial V_2}{\partial z} = 0$ donc V_2 dépend seulement de r, et $\frac{Q}{2\varepsilon_0 r L} = -\frac{dV_2}{d r}$

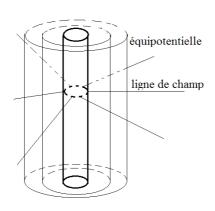
On en déduit $V_2(r) = \frac{-Q}{2\varepsilon_0 L} ln(r) + C$, et l'énoncé indique $V_2(R) = 0$ donc $C = \frac{+Q}{2\varepsilon_0 L} ln(R)$

Finalement
$$V_2(r) = \frac{Q}{2\epsilon_0 L} (\ln(R) - \ln(r)) = \frac{Q}{2\epsilon_0 L} \ln(\frac{R}{r})$$





6)



Exercice 15 Imagerie par résonance magnétique

1) En appliquant le modèle du solénoide infini, $\|\vec{B}\| \simeq \mu_0 \frac{N}{L} I$ donc $I \simeq \frac{\|\vec{B}\|}{\mu_0} \frac{L}{N} \simeq 4.8.10^3 A$

La puissance P_{Joule} = R I ² qui serait dissipée par effet Joule dans une bobine classique provoquerait la surchauffe et la destruction de cette dernière.

2) Le Niobium-Titane est supraconducteur à très basse température, ce qui signifie que sa résistance électrique s'annule. On peut ainsi imposer une intensité importante sans observer l'effet Joule (mais au prix d'un refroidissement à l'hélium liquide).

Exercice 16 Utilisation de l'énergie potentielle électrostatique

1)
$$\vec{E}(M) = -\overrightarrow{grad} V = -E_0 \vec{u}_x \implies \frac{-dV}{dx} = -E_0 \implies V(x) = E_0 x + K$$

Au point H, $V(0) = 0 = K \implies V(x) = E_0 x$ donc $V(L) = E_0 L$

2) On a $E_p = q.V = -e.V$; conservation de l'énergie mécanique : $-e.V(0) + 0 = -e.V(L) + \frac{1}{2}mv_s^2$

on en déduit $v_s = \sqrt{\frac{2eE_0L}{m}} = 3.8.10^7 \text{ m. s}^{-1}$

Exercice 17 Calcul du champ électrostatique à partir du potentiel

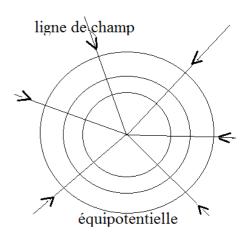
1)
$$\vec{E} = -\overrightarrow{grad} V = -\frac{\partial V}{\partial r} \vec{u_r} - \frac{1}{r} \frac{\partial V}{\partial \theta} \vec{u_\theta} - \frac{\partial V}{\partial z} \vec{u_z} = -2\alpha_1 \cdot r \cdot \vec{u_r} - 2\alpha \cdot z \cdot \vec{u_z}$$

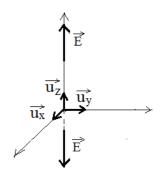
2) Dans le plan Oxy, la coordonnée z est nulle donc $V(r,0) = \alpha_0 + \alpha_1 r^2$. Equation d'une équipotentielle : V = cste $<=> r^2 = cste <=> r = cste (car r>0)$ Les équipotentielles sont des cercles centrés sur O (ces lignes correspondent à la trace des surfaces équipotentielles dans le plan Oxy).

Dans ce plan Oxy, on a $\vec{E} = -2\alpha_1 \cdot r \cdot \vec{u_r}$: les lignes de champ sont des demidroites issues de O, orientées vers O car $\alpha_1 > 0$ d'après l'énoncé.

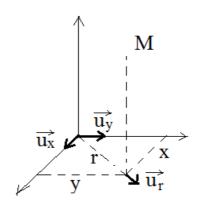
Sur le schéma ci-contre, le plan Oxy est vu de dessus.

3) Pour un point H de l'axe Oz, on a r = 0 (r est la distance à l'axe) donc $\vec{E}(H)$ = $-2\,\alpha_2.\,z.\,\vec{u_z}$ avec α_2 < 0 d'après l'énoncé Si z > 0, $\vec{E}(H)$ est dirigé selon $+\vec{u_z}$ Si z < 0, $\vec{E}(H)$ est dirigé selon $-\vec{u_z}$





4) On obtient $\vec{E} = -2\alpha_1(x\,\vec{u}_x + y\,\vec{u}_y) - 2\alpha_2\,z\,\vec{u}_z$ en cartésiennes En comparant les deux systèmes de coordonnées, on constate que $x\,\vec{u}_x + y\,\vec{u}_y$ représente le même vecteur que $r.\vec{u}_r$, les deux expressions sont identiques.

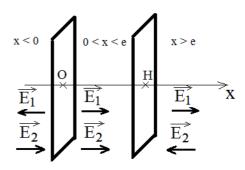


Exercice 18 Champ électrostatique et potentiel dans un condensateur

1) On peut considérer les armatures comme des plans infinis si e << L et e << H.

2)
$$\sigma_1 = \frac{Q}{S}$$
 $\sigma_2 = \frac{-Q}{S}$

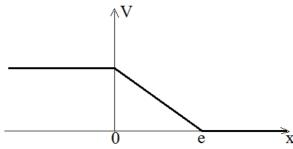
3) voir ci-contre



4)

Domaine	x < 0	0 < x < e	x > e
Champ $\overrightarrow{E_1}$ créé par l'armature 1	$\frac{-Q}{2S\epsilon_0}\vec{u}_x$	$\frac{Q}{2S\epsilon_0}\vec{u}_x$	$\frac{Q}{2S\epsilon_0}\vec{u}_x$
Champ \vec{E}_2 créé par l'armature 2	$\frac{Q}{2S\epsilon_0}\vec{u}_x$	$\frac{Q}{2S\epsilon_0}\vec{u}_x$	$\frac{-Q}{2S\epsilon_0}\vec{u}_x$
Champ total E créé par le condensateur	Ö	$\frac{Q}{S\epsilon_0}\vec{u_x}$	Ö

$$\begin{array}{lll} \text{5)} & \overrightarrow{E} = -\overrightarrow{\text{grad}}\,V & \text{d'où} & \frac{Q}{S\,\varepsilon_0}\overrightarrow{u_x} = \frac{-\partial\,V}{\partial\,x}\overrightarrow{u_x} - \frac{\partial\,V}{\partial\,y}\overrightarrow{u_y} - \frac{\partial\,V}{\partial\,z}\overrightarrow{u_z} & \text{donc} & \frac{dV}{dx} = \frac{-Q}{S\,\varepsilon_0} \text{ , donc} & V(x) = \frac{-Q}{S\,\varepsilon_0}x + K \\ & \text{On choisit V(H)} = 0 \text{ donc} & V(e) = \frac{-Q}{S\,\varepsilon_0}e + K = 0 & \text{, finalement} & V(x) = \frac{Q}{S\,\varepsilon_0}(e - x) \\ & \text{Sur }]-\infty, 0] \text{ et } [e, +\infty[, \quad \overrightarrow{E} = \overrightarrow{0} \quad \text{donc} \quad V = cste \\ & \end{array}$$



6)
$$u_C = V_1 - V_2 = \frac{Q}{S\epsilon_0}e - 0 = \frac{Q}{S\epsilon_0}e$$
 et $Q = Cu_C$ donc $C = \frac{\epsilon_0 S}{e}$

AN: $C = 7.10^{-11} \,\mathrm{F}$

La tension maximale vérifie $u_{max} = E_{max} e$ où $E_{max} \simeq 10^6 \, V \cdot m^{-1}$ est le champ disruptif de l'air, d'où $u_{max} \sim 1 \, \text{kV}$