Conductimétrie Interrogation de cours - Corrigé

- 1. Donner la formule <u>et les unités</u> reliant la conductance d'une portion de solution soumise à une tension électrique U et traversée par un courant I.
- 2 G = I / U G en Siemens (S), U en Volt (V) et I en Ampère (A)
 - 2. Relier la conductance d'une portion de solution à sa résistance.
- G = 1/R
 - 3. Donner la formule <u>et les unités</u> reliant la conductance d'une portion de solution à sa conductivité, en fonction des caractéristiques géométriques de la cellule de conductimétrie utilisée pour la mesure de conductance.
- 3 $G = \sigma \times S / L$ G en S σ en S. m⁻¹ S, surface des électrodes, en m² et L. distance entre les électrodes, en m
 - 4. Donner la formule <u>et les unités</u> reliant la conductivité d'une solution ionique aux **concentrations molaires des ions** en solution.
 - $\sigma = \Sigma_{ions \, i} \, \lambda_i \times c_i$ σ en S. m⁻¹ λ_i : conductivité molaire ionique de l'ion i en S. m².mol⁻¹ c_i : concentration effective de l'ion i en mol.m⁻³
 - 5. <u>Application</u>: Après avoir écrit son équation de dissolution, calculer la conductivité d'une solution de KCl de concentration $c = 5.0 \cdot 10^{-2}$ mol.L⁻¹.

 $\lambda(C\ell^-) = 8 \text{ mS.m}^2.\text{mol}^{-1}$

 $KC\ell$ (s) \rightarrow $K^{+}(aq) + C\ell^{-}(aq)$ donc $[K^{+}] = [C\ell^{-}] = c$ $\sigma = \lambda(K^{+}) \times [K^{+}] + \lambda(C\ell^{-}) \times [C\ell^{-}]$

 $\lambda(K^{\dagger}) = 7 \text{ mS.m}^2.\text{mol}^{-1}$

 $\sigma = 75$ mS.m⁻¹

Données :

- 6. <u>Application</u>: On mesure le pH d'une solution aqueuse : pH = 6,2. Donner la concentration en ion oxonium dans la solution. La solution est-elle acide ou basique ?
- 3 $[H_3O^+] = 10^{-6.2}$ $[H_3O^+] = 6.3 \cdot 10^{-7} \text{ mol.L}^{-1}$ La solution est acide car pH < 7
 - 7. A partir des demi-équations des couples oxydant / réducteur $Cr_2O_7^{2-}$ / Cr^{3+} et Hg^{2+} / Hg, écrire l'équation de la réaction entre les ions $Cr_2O_7^{2-}$ et le mercure métallique Hg.

 $Cr_2O_7^{2-} + 14 H^+ + 6 e^- = 2 Cr^{3+} + 7 H_2O$

5 Hg = Hg²⁺ + 2 e⁻ (X3 $Cr_2O_7^{2-}$ + 14 H⁺ + 3 Hg = 2 Cr^{3+} + 7 H₂O + 3 Hg²⁺