CHAPITRE 9: EQUILIBRES DE DISSOLUTION OU PRECIPITATION

DEUXIEME PARTIE

Exemples-types (à maîtriser)

<u>Exemple 9.5</u>:

1) On donne Z(Al) = 13. Proposer une formule pour l'ion stable de l'aluminium.

L'ion aluminium forme avec l'ion hydroxyde HO un solide ionique dont le produit de solubilité vaut

$$K_s = 10^{-33.6}$$

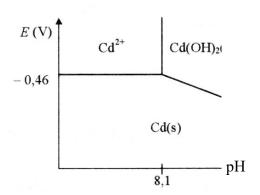
2) Donner la formule de l'hydroxyde d'aluminium

On possède une solution comportant des ions Al^{n+} à la concentration $[Al^{n+}] = 10^{-2}$ mol.L⁻¹. On ajoute sans variation de volume des ions HO⁻ progressivement dans la solution.

- 3) Ecrire l'inégalité de condition d'existence du solide hydroxyde d'aluminium. En déduire la concentration minimale [HO-]_{min} pour qu'il y ait précipitation.
- 4) En déduire la concentration maximale en [H₃O⁺]_{max} associée à la précipitation.
- 5) En déduire le pH minimal de précipitation.
- 6) Le solide est-il présent à pH = 7?

Exemple 9.6: Construire le diagramme d'existence en fonction du pH de $Fe(OH)_2$ pour $[Fe^{2+}] = C_0 = 10^{-2}$ mol.L⁻¹. Donnée: $pK_s(Fe(OH)_2) = 15,1$.

Exemple 9.7 : Construire le diagramme d'existence en fonction du pH de $Fe(OH)_2$ pour $[Fe^{2^+}] = C_0$ ' = 10^{-6} mol.L⁻¹.


Exemple 9.8: On fournit le diagramme d'existence du solide hydroxyde de fer (III) avec une concentration de tracé $[Fe^{3+}] = 1,0.10^{-2} \text{ mol.L}^{-1}$

$$\begin{array}{c|c}
 & Fe^{3+}(aq) & Fe(OH)_3(s) \\
\hline
 & 3
\end{array}$$

Par lecture du pH de début de précipitation, déterminer la valeur du pK_s de ce solide.

Exemple 9.9 (CPGE3): Lecture d'un diagramme potentiel-pH

On fournit le « quasi » diagramme d'existence pour le solide $Cd(OH)_2(s)$ avec une concentration de tracé égale à $1,0.10^{-2}$ mol.L⁻¹. Déterminer le pKs de ce solide.

2. Comment construire le diagramme d'existence d'un précipité ?

a) Lien entre précipitation et pH

Exemple 9.5 (vu en colle)

b) Diagramme d'existence d'un solide ionique

Pour les solides du type hydroxydes, comportant des ions HO- à caractère basiques, sur le principe des diagrammes de prédominance acido-basiques, on représente graphiquement les conditions pour lesquelles un précipité apparaît dans le milieu.

Par exemple, vus les conclusions de l'exemple 9.5, on notera le diagramme suivant :

Ce diagramme d'existence se lit ainsi :

$$C_{\text{tracé}} = 10^{-2} \text{ mol.L}^{-1}$$

- Si pH > 3,5, le solide existe
- Si pH < 3,5, le solide n'existe pas
- c) Obtention par calcul des diagrammes d'existence d'un solide

Il suffit de se rappeler $[H_3O^+]$. $[HO^-] = K_e = 10^{-14}$ (à 25°C) pour toutes le solutions aqueuses.

Résolution-type de recherche de pH de précipitation :

Le solide existe si au minimum on a [ion][HO⁻]^p = K_s

avec[ion] =
$$C_{\text{trac\'e}}$$
 donc [HO-] = $\sqrt[p]{\frac{K_S}{[ion]}}$ donc [H₃O⁺] = $\frac{10^{-1}}{[HO-]}$ donc pH = -log([H₃O⁺]) = ?

Exemples 9.6 et 9.7

d) Lecture d'un pH de précipitation et obtention de K_s

A l'inverse, connaître la valeur du pH de début de précipitation indique la concentration en ions HO-nécessaire donc la valeur de K_s.

Résolution-type de recherche de K_s:

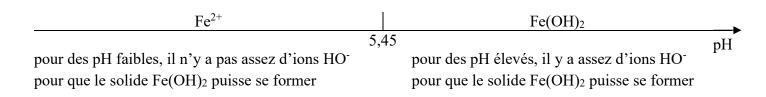
Le pH de précipitation vaut pH= -log([H₃O⁺]) donc [H₃O⁺] =
$$10^{-pH}$$
 donc [HO⁻] = $\frac{10^{-14}}{[H_3O_+]}$

donc $K_s = [ion][HO^-]^p$ à la limite d'existence du solide.

Exemples 9.8 et 9.9 (CPGE3)

CHAPITRE 9 : EQUILIBRES DE DISSOLUTION OU DE PRECIPITATION

I. <u>Solubilité et produit de solubilité</u>


- La solubilité d'un solide est la quantité maximale de solide qui peut être dissoute dans une solution. Au-delà de cette limite, la solution est dite saturée.
- La constante d'équilibre de la réaction de dissolution est appelée produit de solubilité.

$$AgCl_{(s)} = Ag^+_{(aq)} + Cl^-_{(aq)}$$
 de produit de solubilité $K_s = [Ag^+]_{eq}$. $[Cl^-]_{eq}$
$$Ag^+_{(aq)} + Cl^-_{(aq)} = AgCl_{(s)}$$
 a pour constant $K = 1/K_s$

II. Etat final d'un système siège d'une réaction de précipitation/dissolution

- La comparaison du produit [Ag⁺].[Cl⁻]et K_s permet de déterminer si le solide est présent à l'état final:
 - si [Ag⁺].[Cl⁻] >K_s, il y a formation du précipité (car il y a assez d'ions)
 - si [Ag⁺].[Cl⁻]<K_s, il y a dissolution du précipité (car il n'y a pas assez d'ions en solution)
- Ce critère de précipitation peut être repris de manière graphique grâce au diagramme d'existence du précipité :

Exemple du diagramme d'existence de $Fe(OH)_2$ avec la convention $[Fe^{2+}] = 1,0.10^{-2} \text{ mol.L}^{-1}$:

