« COLLE » de la SEMAINE du 15 JUIN 2020 – CORRIGE

TEST DE COURS : Chapitre 14 Partie 2

- 1) Premier principe de la thermodynamique, qui traduit la conservation de l'énergie pour un système fermé : $\Delta U = W + Q$
- 2) Travail des forces de pression pour une transformation lente : $W = -\int_{V_i}^{V_f} P dV$
- 3) W = 0 si $V_i = V_f$ c'est le cas des transformations à V constant = transformations isochores
- 4) H = U + P.V en J
- 5) Ce qui est toujours vrai :
 - Premier principe de la thermodynamique : $\Delta U = W + Q$
 - Expression de l'énergie interne : $\Delta U = C_V \cdot (T_f T_i)$
 - Expression de l'enthalpie : $\Delta H = C_p.(T_f T_i)$

Pour les transformations isochores uniquement :

- $\bullet \quad Q = C_V(T_f T_i)$
- $Q = \Delta U$

Pour les transformations isobares/monobares uniquement :

- $Q = C_p(T_f T_i)$
- $Q = \Delta H$

EXERCICE DE PHYSIQUE: Moteur Stirling de sous-marin

1) Signe du travail reçu à chaque étape :

 $W_{12} > 0$ car diminution du volume

 $W_{23} = 0$ car isochore

 $W_{34} < 0$ car augmentation du volume

 $W_{41} = 0$ car isochore

La valeur absolue de l'intégrale = aire sous la courbe est plus importante pour l'étape $3 \rightarrow 4$ est plus importante, donc ce travail l'emporte pour le signe du travail total donc $W_{tot} < 0$.

2)
$$C_V = \frac{5}{2}nR = 10.4 \text{ J.K}^{-1}$$

3) De manière générale $W = -\int_{V_i}^{V_f} P dV$ et $Q = \Delta U - W = C_V(T_f - T_i) - W$

1→2 isotherme donc
$$W_{12} = -\int_{V_1}^{V_2} \frac{nRT_1}{V} dV = -nRT_1 ln \left(\frac{V_2}{V_1}\right) = nRT_f ln(2)$$

Donc
$$Q_{12} = \Delta U - W_{12} = 0 - W_{12} = -nRT_f ln(2)$$

2
$$\rightarrow$$
3 isochore donc $W_{23} = 0$ et $Q_{23} = \Delta U = \frac{5}{2} nR(T_c - T_f)$

3
$$\rightarrow$$
4 isotherme donc W₃₄ = - $\int_{V_2}^{V_1} \frac{nRT_c}{v} dV = -nRT_c ln(2)$

donc
$$Q_{34} = nRT_cln(2)$$

4→1 isochore donc
$$W_{4l}=0$$
 et $Q_{4l}==\frac{5}{2}nR(T_f-T_c)$

4)
$$W = W_{12} + W_{23} + W_{34} + W_{41} = nR ln2 (T_f - T_c) = -864 J < 0$$

5)
$$P = \frac{|W|}{\Delta t} = 72 \text{ kW avec } \Delta t = 60/5000 \text{ s}$$

EXERCICE DE CHIMIE : pH de précipitation de l'hydroxyde d'aluminium

- 1) $Z(Al) = 13: 1s2\ 2s2\ 2p6\ 3s2\ 3p1: 3^e$ ligne, 13^e colonne. Ion stable: Al^{3+} L'ion aluminium forme avec l'ion hydroxyde HO^- un solide ionique dont le produit de solubilité vaut $K_s = 10^ _{33.6}$
 - 2) Hydroxyde d'aluminium contient des ions Al³⁺ et 3 fois plus d'ions HO⁻ donc Al(OH)₃(s).
 - 3) Inégalité de condition d'existence du solide Al(OH)₃ : [Al³⁺][HO⁻]³ > K_s = 10^{-33,6} donc [HO⁻] = [HO⁻]_{min} = $\sqrt[3]{\frac{K_S}{[Al3+]}} = \sqrt[3]{\frac{10^{-33,6}}{10^{-2}}} = 10^{-10,5}$ mol.L⁻¹

4)
$$[HO^{-}].[H_{3}O^{+}] = K_{e} = 10^{-14} \text{ donc } [H_{3}O^{+}] = [H_{3}O^{+}]_{max} = \frac{K_{e}}{[HO^{-}]_{min}} = \frac{10^{-14}}{10^{-10.5}} = 10^{-3.5}$$

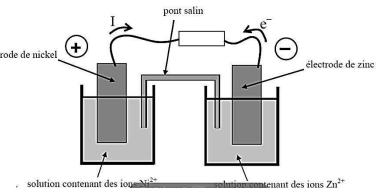
- 5) $pH_{min} = -log([H_3O^+]_{max}) = 3.5$
- 6) $7 > pH_{min}$ donc le solide est présent

REVISIONS AUTONOMES DE CHIMIE : Décharge partielle d'une pile zinc-nickel

1.1. Dans Zn, no(Zn) = 0 et dans Zn^{2+} , no(Zn) = +II

1.2.
$$E(Zn^{2+}/Zn) = E^{\circ}(Zn^{2+}/Zn) + 0.03.log[Zn^{2+}] = -0.76 + 0.03.log(5.0.10^{-2}) = -0.80 V$$

 $E(Ni^{2+}/Ni) = E^{\circ}(Ni^{2+}/Ni) + 0.03.log[Ni^{2+}] = -0.25 + 0.03.log(5.0.10^{-2}) = -0.29 \text{ V} > E(Zn^{2+}/Zn) \text{ donc le pôle} + est le nickel et le pôle – est le zinc d'où le schéma de la pile :$



- 1.3. Équation des réactions.
- ▶ Demi-équations des réactions se produisant aux électrodes: à l'électrode + , il y a consommation d'électrons, donc une réduction (cathode): $Ni^{2+}(aq) + 2e^- = Ni$ (s) à l'électrode -, il y a libération d'électrons, donc une oxydation (anode) Zn (s) = Zn^{2+} (aq) + 2 e^-
 - Équation de la réaction globale qui intervient quand la pile débite:

$$Ni^{2+}(aq) + Zn(s) = Zn^{2+}(aq) + Ni(s)$$

2.1. $n_{disp}(Ni^{2+}) = n(Ni, form\acute{e}) = \Delta m/M(Ni) = 1,7.10^{-3} mol$

2.2
$$Q = n(e^{-}).F = 2.n_{disp}(Ni^{2+}).F = 329 C. Donc I = Q/\Delta t = 9,1.10^{-2} A$$

REVISIONS AUTONOMES DE MECANIQUE : 3 exercices-type

Pendule de Foucault

En l'absence de frottements, on peut utiliser soit la conservation de l'énergie mécanique soit la loi de la puissance cinétique.

Système = {boule}

Référentiel terrestre supposé galiléen (même si cette expérience est faite pour montrer qu'il n'est PAS galiléen)

Bilan des forces : poids et tension du fil

Conservation de l'énergie mécanique:
$$\frac{dE_m}{dt} = 0$$
 avec $E_m = \frac{1}{2}mv^2 + mgz = \frac{1}{2}m(\ell\dot{\theta})^2 + mg(\ell - \ell\cos\theta)$

$$\frac{dE_m}{dt} = \frac{1}{2}m\ell^2. 2. \dot{\theta}\ddot{\theta} + mg\ell\dot{\theta}\sin\theta = 0 \ donc \ \ddot{\theta} + \frac{g}{\ell}\theta = 0 \ aux \ petits \ angles$$

Loi de la puissance cinétique:
$$\frac{dE_c}{dt} = P(\vec{P}) + P(\vec{T}) = \frac{d}{dt} \left(\frac{1}{2}m\ell^2\dot{\theta}^2\right) = \frac{1}{2}m\ell^2$$
. 2. $\dot{\theta}\ddot{\theta}$ = $\vec{P}.\vec{v} + 0 = -mg\ell\dot{\theta}sin\theta$ donc $\ddot{\theta} + \frac{g}{\ell}\theta = 0$ aux petits angles

$$2^e$$
 loi de Newton : $m\overrightarrow{a_G} = \vec{P} + \vec{T}$ avec $\overrightarrow{a_G} = \ell \ddot{\theta} \overrightarrow{u_{\theta}} - \ell \dot{\theta}^2 \overrightarrow{u_r}$

Projection sur
$$\overrightarrow{u_{\theta}}$$
: $m\ell\ddot{\theta} = -mg\sin\theta + 0$ donc $\ddot{\theta} + \frac{g}{\rho}\theta = 0$ aux petits angles

Période propre:
$$T_0 = \frac{2\pi}{\omega_0}$$
 avec $\frac{g}{\ell} = \omega_0^2$ donc $T_0 = \frac{2\pi}{\sqrt{\frac{g}{\ell}}} = 16.4$ s soient 5262 oscillations en 24h.

Chute avec frottements

- 1) $\Delta E_c = W(\vec{P}) \Leftrightarrow \frac{1}{2} mv^2 0 = mg(h_1 h_2) \Leftrightarrow v = \sqrt{2g(h_1 h_2)} = 98 \text{ m.s}^{-1} = 356 \text{ km.h}^{-1} >> 240 \text{ km.h}^{-1}$: les frottements fluides ne sont pas négligeables!
- 2) En considérant les frottements entre h_1 et h_2 : $\Delta E_c = W(\vec{P}) + W(\vec{f}) \Leftrightarrow W(\vec{f}) = \Delta E_c W(\vec{P}) = \frac{1}{2} mv^2 mg(h_1 h_2) = -241 \text{ kJ}$.
- 3) Entre h_2 et $0: \Delta E_c = W(\vec{P}) + W(\vec{f}) \iff W(\vec{f}) = \Delta E_c W(\vec{P}) = \frac{1}{2} mv_F^2 \frac{1}{2} mv^2 mg(h_2 0) = -640 \text{ kJ}$
- 4) Sur des distances comparables, le travail est plus important (en valeur absolue) lorsque le parachute est ouvert car la force de frottements est plus grande en norme.

Oscillations forcées d'un dispositif masse-ressort

On cherche une solution particulière sinusoïdale de l'équation $m\frac{d^2x}{dt^2} = -kx(t) - h\frac{dx}{dt} + F_m \cos(\omega t)$

On utilise la solution particulière complexe $\underline{x}(t) = \underline{X} \cdot e^{j\omega t}$ de l'équation $m \frac{d^2 \underline{x}}{dt^2} = -k \underline{x}(t) - h \frac{d\underline{x}}{dt} + F_m e^{j\omega t}$

On cherche l'amplitude complexe \underline{X} et on obtient $X_{max} = |\underline{X}|$ et $\varphi = arg(\underline{X})$

$$m\frac{d^2\underline{x}}{dt^2} = -k\underline{x}(t) - h\frac{d\underline{x}}{dt} + F_m e^{j\omega t} \ devient - m\omega^2. \underline{X} = -k\underline{X} - hj\omega\underline{X} + F_m$$

$$donc \ \underline{X} = \frac{F_m}{-m\omega^2 + k + hj}$$

$$X_{max} = |\underline{X}| = \frac{F_m}{\sqrt{(k - m\omega^2)^2 + (h\omega)^2}}$$

et $\varphi = arg(\underline{X}) = 0 - arg(-m\omega^2 + k + hj\omega)$ attention a priori $-m\omega^2 + k$ peur être positif, négatif ou nul

donc la formule $arg(-m\omega^2+k+hj\omega)=arctan(\frac{h\omega}{k-m^2})$ n'est valable que dans le 1^e cas...

Complément : On pensera à réécrire $-m\omega^2 + k + hj\omega = hj\omega \cdot (-\frac{m\omega}{hj} + \frac{k}{hj\omega} + 1) = hj\omega \cdot (1 + j(\frac{m\omega}{h} - \frac{k}{h\omega}))$

Dans ce cas $\varphi = arg(\underline{X}) = 0 - \pi/2 - arctan(\frac{m\omega}{h} - \frac{k}{h\omega})$

<u>Régime transitoire</u>: Equation différentielle homogène $m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + kx(t) = 0 \iff \frac{d^2x}{dt^2} + \frac{h}{m}\frac{dx}{dt} + \frac{k}{m}x(t) = 0$ Par identification, $\frac{k}{m} = \omega_0^2$ donc $\omega_0 = \sqrt{\frac{k}{m}}$ et $\frac{h}{m} = \frac{\omega_0}{Q}$ donc $Q = \frac{\sqrt{mk}}{h}$

Si $Q < \frac{1}{2}$: régime apériodique. Durée 3. τ avec $-\frac{1}{\tau}$ racines de l'équation caractéristique

Si $Q=\frac{1}{2}$: régime critique. Durée $3.\tau$ avec $-\frac{1}{\tau}=-\frac{h/m}{2}$ racine de l'équation caractéristique

Si Q > 1/2: régime pseudopériodique. Durée Q.T (Q oscillations visibles) ou 3. τ avec $-\frac{1}{\tau}$ partie réelle des racines complexes de l'équation caractéristique.