Devoir surveillé n°1

Exercice 1 Exercice 2

1. $\{G_1; \overline{G_1}\}$ constitue une partition de l'univers. On utilise la formule des probabilités totales :

$$p_2 = p(G_2|G_1) \times p(G_1) + p(G_2|\overline{G_1}) \times p(\overline{G_1}).$$

 $p_2 = 0,8 \times 0,1 + 0,6 \times 0,9 = 0,62.$

- **2.** $p(\overline{G_1}|G_2) = \frac{p(\overline{G_1} \cap G_2)}{p(G_2)} = \frac{0.9 \times 0.6}{0.62} = 0.871$ arrondi au millième.
- 3. a. L'évènement "Le joueur gagne exactement deux parties parmi les 4" est constitué des évènements:

—
$$A_1 = G_1 \cap G_2 \cap \overline{G_3} \cap \overline{G_4}$$
 et $p(A_1) = 0, 1 \times 0, 8 \times 0, 2 \times 0, 4$

—
$$A_2 = G_1 \cap \overline{G_2} \cap G_3 \cap \overline{G_4}$$
 et $p(A_2) = 0, 1 \times 0, 2 \times 0, 6 \times 0, 2$

—
$$A_3 = G_1 \cap \overline{G_2} \cap \overline{G_3} \cap G_4$$
 et $p(A_3) = 0, 1 \times 0, 2 \times 0, 4 \times 0, 6$

—
$$A_4 = \overline{G_1} \cap G_2 \cap G_3 \cap \overline{G_4}$$
 et $p(A_4) = 0, 9 \times 0, 6 \times 0, 8 \times 0, 2$

$$--A_5 = \overline{G_1} \cap G_2 \cap \overline{G_3} \cap G_4 \text{ et } p(A_5) = 0,9 \times 0,6 \times 0,2 \times 0,6$$

—
$$A_6 = \overline{G_1} \cap \overline{G_2} \cap G_3 \cap G_4$$
 et $p(A_6) = 0, 9 \times 0, 4 \times 0, 6 \times 0, 8$

Finalement, la probabilité de cet évènement est égale à la somme de ces probabilités, soit 0,3376.

b. On calcule la probabilité de l'évènement contraire : "Le joueur perd les quatre parties".

Cette probabilité est égale à $0.9 \times 0.4 \times 0.4 \times 0.4 = 0.0576$. La probabilité qu'il gagne au moins une partie sur les quatre est égale à 1 - 0.0576 = 0,9424.

4. On procède de manière analogue à la question 1.:

 $\{G_n; \overline{G_n}\}$ constitue une partition de l'univers.

On utilise la formule des probabilités totales :

$$p_{n+1} = p(G_{n+1}|G_n) \times p(G_n) + p\left(G_{n+1}|\overline{G_n}\right) \times p\left(\overline{G_n}\right).$$

$$p_{n+1} = 0.8p_n + 0.6(1 - p_n) = 0.2p_n + 0.6$$
. soit $p_{n+1} = \frac{1}{5}p_n + \frac{3}{5}$.

5. On raisonne par récurrence : on veut montrer que $\forall n \in \mathbb{N}^*$, $p_n = \frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^n$.

Initialisation: (n = 1).

On a
$$\frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^1 = \frac{1}{10} = p_1$$
.

Ainsi, la propriété est vraie au rang 1.

Hérédité:

Soit $n \in \mathbb{N}^*$: on suppose que $p_n = \frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^n$ et on veut montrer que

$$p_{n+1} = \frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^{n+1}$$
.

D'après la question **4.**, on a $p_{n+1} = \frac{1}{5}p_n + \frac{3}{5}$.

On utilise l'hypothèse de récurrence : $p_{n+1} = \frac{1}{5} \left(\frac{3}{4} - \frac{13}{4} \left(\frac{1}{5} \right)^n \right) + \frac{3}{5}$.

$$p_{n+1} = \frac{3}{20} + \frac{3}{5} - \frac{13}{4} \left(\frac{1}{5}\right)^{n+1}.$$

On a donc $p_{n+1} = \frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^{n+1}$ et la propriété est héréditaire.

Conclusion:

D'après le principe de récurrence, on a :

$$\forall n \in \mathbb{N}^*, p_n = \frac{3}{4} - \frac{13}{4} \left(\frac{1}{5}\right)^n.$$

6.
$$\left| \frac{1}{5} \right| < 1 \text{ donc } \lim_{n \to \infty} \left(\frac{1}{5} \right)^n = 0 \text{ et } \lim_{n \to \infty} p_n = \frac{3}{4}.$$

7.
$$\forall n \in \mathbb{N}^*, \frac{13}{4} \left(\frac{1}{5}\right)^n > 0 \text{ donc } \frac{3}{4} - p_n > 0.$$

$$\frac{3}{4} - p_n < 10^{-7} \Longleftrightarrow \frac{13}{4} \left(\frac{1}{5}\right)^n < 10^{-7} \Longleftrightarrow \ln\left(\frac{13}{4}\right) + n\ln\left(\frac{1}{5}\right) < -7\ln 10$$

$$\iff n > \frac{-7\ln 10 - \ln\left(\frac{13}{4}\right)}{\ln\left(\frac{1}{5}\right)} = 10, 7 \text{ arrondi au dixième.}$$

Ainsi, on a
$$\frac{3}{4} - p_n < 10^{-7} \iff n > 11$$
.

Exercice 2

- 1. En posant $A = \begin{pmatrix} -3 & 1 & 3 \\ -4 & 1 & 4 \\ -2 & 1 & 2 \end{pmatrix}$, on a, pour tout entier naturel n, $X_{n+1} = AX_n$.
- **2**. On montre par récurrence que pour tout entier naturel n, on a $X_n = A^n X_0$: **Initialisation :(n=0)**

Au rang n = 0, la propriété s'écrit $X_0 = A^0 X_0$ ce qui est vrai puisque $A^0 = Id$. La propriété est donc vraie pour n = 0.

Hérédité:

Soit $n \in \mathbb{N}$. On suppose que $X_n = A^n X_0$ et on veut montrer que $X_{n+1} = A^{n+1} X_0$. D'après la question précédente, on a $X_{n+1} = A X_n$ donc en utilisant l'hypothèse de récurrence, on a $X_{n+1} = A \cdot (A^n \cdot X_0) = A^{n+1} X_0$.

La propriété est donc héréditaire.

Conclusion:

La propriété est vraie au rang 0 et est héréditaire donc d'après le principe de récurrence, on a :

$$\forall n \in \mathbb{N}, X_n = A^n X_0.$$

- 3. On montre facilement que me déterminant de ces trois vecteurs est égal à -1 donc non nul : cette famille est donc une famille libre de 3 vecteurs de $\frac{3}{R}$: c'est donc une base de \mathbb{R}^3 .
- **4.** On a facilement que $AV_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = V_1$, que $AV_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = -V_2$ et que $AV_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0.V_3$.

On en déduit que la matrice D de l'application linéaire associée à A dans la base

$$\{V_1, V_2, V_3\} \text{ est } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5. Soit $n \in \mathbb{N}$. Montrons par récurrence la propriété : $\forall n \in \mathbb{N}$, $A^n = P.D^n.P^{-1}$.

Initialisation:(n=0)

Au rang n=0, la propriété s'écrit $A^0=P.D^0P^{-1}$ ce qui est vrai puisque $A^0=D^0=Id$. La propriété est donc vraie pour n=0.

Hérédité:

Soit $n \in \mathbb{N}$. On suppose que $A^n = P.D^n.P^{-1}$ et on veut montrer que $A^{n+1} = P.D^{n+1}.P^{-1}$.

On a $A^{n+1} = A.A^n$ donc, en utilisant l'hypothèse de récurrence, on a $A^{n+1} = A.(P.D^n.P^{-1})$.

D'après les formules usuelle de changement de base, on a de plus $A = P.D.P^{-1}$ donc $A^{n+1} = (P.D.P^{-1}).(P.D^n.P^{-1}) = P.D.(P^{-1}.P)D^n.P^{-1} = P.D^{n+1}.P^{-1}$ La propriété est donc héréditaire.

Conclusion:

La propriété est vraie au rang 0 et est héréditaire donc d'après le principe de récurrence, on a :

$$\forall n \in \mathbb{N}, A^n = P.D^n.P^{-1}.$$

6. Pour tout entier naturel non nul n, on a $D^{2n-1} = \begin{pmatrix} (1)^{2n-1} & 0 & 0 \\ 0 & (-1)^{2n-1} & 0 \\ 0 & 0 & 0 \end{pmatrix} = D$ et

$$D^{2n} = \begin{pmatrix} (1)^{2n} & 0 & 0 \\ 0 & (-1)^{2n} & 0 \\ 0 & 0 & 0 \end{pmatrix} = D^2. \text{ Donc pour tout entier naturel non nul } n, \text{ on a}$$

$$A^{2n-1} = A \text{ et } A^{2n} = A^2.$$

- 7. Dans cette question, on suppose que $X_0 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.
 - **a.** D'après les questions précédentes, on a, pour tout entier naturel *n* non nul,

$$X_{2n} = A^2 X_0 = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
donc $u_{2n} = v_{2n} = w_{2n} = 1$.

De plus, pour tout entier naturel *n* non nul, on a

$$X_{2n-1} = AX_0 = \begin{pmatrix} -3 & 1 & 3 \\ -4 & 1 & 4 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{donc } u_{2n-1} = v_{2n-1} = w_{2n-1} = 1.$$

On a donc $u_0 = w_0 = 2$ et $v_0 = 1$ et pour tout entier naturel n non nul, $u_n = v_n = w_n = 1$.

- **b.** Les trois suites sont donc constantes (égales à 1) à partir du rang 1. Elle convergent donc toutes les trois vers 1.
- 8. On raisonne de façon analogue à la question précédente :

On a, pour tout entier naturel *n* non nul,
$$X_{2n} = A^2 X_0 = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 donc

$$u_{2n} = 1$$
, $v_{2n} = 2$ et $w_{2n} = 0$.

De plus, pour tout entier naturel n non nul, on a

$$X_{2n-1} = AX_0 = \begin{pmatrix} -3 & 1 & 3 \\ -4 & 1 & 4 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
donc $u_{2n} = 1$, $v_{2n} = -2$ et $w_{2n} = 0$.

Ainsi, on a, pour tout entier naturel n: $u_n = 1$, $v_n = (-1)^n.2$ et $w_n = 0$.

On a donc (u_n) et (w_n) qui sont des suites constantes donc convergentes, et (v_n) n'est pas convergente (égale alternativement à -2 et 2).

Exercice 3

Partie A : Étude de la fonction f

1. Sens de variation de *f*

a. Soit $x \in [0; +\infty[:f'(x) = 2x - e^{-\frac{1}{3}x}]$ et $f''(x) = 2 + \frac{1}{3}e^{-\frac{1}{3}x}$. Ainsi, on a f''(x) > 0 sur $[0; +\infty[$.

En outre, f'(0) = -1 et $\lim_{x \to +\infty} f'(x) = +\infty$ par somme.

On en déduit le tableau de variations :

x	0	+∞
f''(x)		+
f'(x)	-1	+∞

b. Sur $[0, +\infty[$, f' est continue, strictement croissante et admet des valeurs positives $(\lim_{x \to +\infty} f'(x) = +\infty)$ et négatives (f'(0) = -1) donc l'équation f'(x) = 0 admet une unique solution, notée α .

f'(0,43) < 0 et f'(0,44) > 0 donc on a $0,43 < \alpha < 0,44$.

c. D'après le tableau de variations de f' et ce qui précède, on a :

x	0		α		+∞
f'(x)		-	0	+	

2. Comportement asymptotique de f en $+\infty$

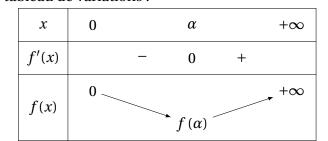
a. $\lim_{x \to +\infty} f(x) = +\infty$ par somme.

b. $(f(x) - (x^2 - 3)) = 3e^{-\frac{1}{3}x} > 0$ et $\lim_{x \to +\infty} (f(x) - (x^2 - 3)) = \lim_{x \to +\infty} 3e^{-\frac{1}{3}x} = 0$. On en déduit que la parabole (\mathscr{P}) d'équation $y = x^2 - 3$ est asymptote à la courbe

 (\mathscr{C}) en direction de $+\infty$, et que la courbe (\mathscr{C}) est au-dessus de la parabole (\mathscr{P}) sur $[0,+\infty[$.

3. Signe de f

a. On a f(0) = 0, $f(\alpha) = -0.21$ arrondi à 10^{-2} et $\lim_{x \to +\infty} f(x) = +\infty$ par somme. On en déduit le tableau de variations :



b. Sur $[0, \alpha]$, le maximum de f est 0, atteint pour x = 0 donc l'équation f(x) = 0admet une unique solution: 0.

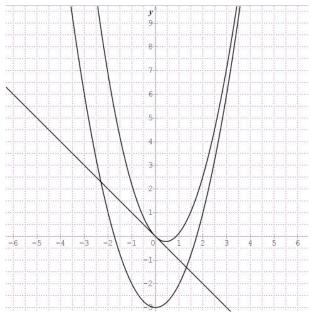
Sur $[\alpha, +\infty[$, f est continue, strictement croissante et admet des valeurs positives $(\lim_{x \to +\infty} f(x) = +\infty)$ et négatives $(f'(\alpha) < 0)$ donc l'équation f(x) = 0 admet une unique solution, notée β .

f(0,8) < 0 et f(0,9) > 0 donc on a $0,8 < \beta < 0,9$.

c. D'après ce qui précède, on a :

x	0		β		+∞
f(x)	0	_	0	+	

4. On a f'(0) = -1 et f(0) = 0 donc on montre facilement que la tangente au point d'abscisse 0 a pour équation y = -x.



5. **a.** $I(\lambda) = \int_0^{\lambda} |f(x) - (x^2 - 3)| dx = \int_0^{\lambda} |3e^{-\frac{1}{3}x}| dx = \left[-9e^{-\frac{1}{3}x}\right]_0^{\lambda} = 9\left(-e^{-\frac{\lambda}{3}} + 1\right).$

- **b.** Ce nombre représente, en unité d'aires, l'aire du domaine plan compris entre la courbe (\mathscr{C}), la parabole (\mathscr{P}), et les droites d'équations respectives x = 0 et $x = \lambda$.
- **c.** $\lim_{\lambda \to +\infty} I(\lambda) = 9$ par somme.

Partie B : Approximation de la solution β de l'équation f(x) = 0

Soit g la fonction définie sur l'intervalle I = [0, 8; 0, 9] par

$$g(x) = x - f(x) = x + 3 - x^2 - 3e^{-\frac{1}{3}x}$$
.

Ainsi la solution β de l'équation f(x) = 0 est aussi l'unique solution de l'équation g(x) = x.

- 1. Étude de la fonction g'.
 - **a.** Soit $x \in [0,8;0,9]$: g'(x) = 1 f'(x) et g''(x) = -f''(x) < 0 sur [0,8;0,9]. g' est donc strictement décroissante sur [0,8;0,9], g'(0,8) = 0,17 arrondi à 10^{-2} et g'(0,9) = -0,06 arrondi à 10^{-2}
 - **b.** Sur [0,8;0,9], g' est continue, strictement décroissante et admet des valeurs positives (g'(0,8)>0) et négatives (g'(0,9)<0) donc l'équation g'(x)=0 admet une unique solution, notée γ . g' est strictement décroissante sur $[\gamma;0,9]$ donc le maximum de |g'| est atteint pour x=0,9, et $g'(0,9)\leq .10^{-2}$. g' est strictement décroissante sur $[0,8;\gamma]$ donc le maximum de |g'| est atteint pour x=0,8, et $g'(0,8)\leq .\frac{1}{5}$. Finalement, on a donc : $\forall x\in I$, $|g'(x)|\leq \frac{1}{5}$.
- **2**. Étude de la fonction g.
 - a. En utilisant ce qui précède :

x	0,8		γ	C),9
g'(x)		+	0	_	
g(x)	g(0,8)		_γ g(γ)	g(0,9)

b. g(0,8) = 0,862 arrondi à 10^{-3} et g(0,9) = 0,868 arrondi à 10^{-3} . La fonction g est continue sur $[\gamma;0,9]$, dérivable sur $]\gamma;0,9[$ et d'après la question 1.b, on a $g'(x) \le 6.10^{-3}$ sur $]\gamma;0,9[$ donc, en utilisant l'inégalité des accroissements finis, on a

$$|g(0,9) - g(\gamma)| \le 6.10^{-3}$$
.

D'après le tableau de variations de g, on a $g(\gamma) > g(0,9)$ donc $g(\gamma) < g(0,9) + 6.10^{-3} < 0.871$ donc $g(\gamma) \in I$.

- **c.** D'après le tableau de variations de g, on a, pour tout x appartenant à I, $g(x) \in [g(0,8;g(\gamma)] \subset I$ puisque 0,8 < g(0,8) < 0,9 et $0,8 < g(\gamma) < 0,9$. On a donc, pour tout $x \in I$, $g(x) \in I$.
- **d.** La fonction g est continue sur I, dérivable sur I et d'après la question 1.b, on a $g'(x) \le \frac{1}{5}$ sur I donc, en utilisant l'inégalité des accroissements finis, on a, pour tout x de I, et comme $g(\beta) = \beta$:

$$\left| g(x) - \beta \right| \le \frac{1}{5} \left| x - \beta \right|$$

- 3. Étude d'une approximation de β . Soit (u_n) la suite d'éléments de I définie par la relation de récurrence $u_{n+1} = g(u_n)$ et la condition initiale $u_0 = 0, 8$.
 - **a.** Soit $n \in \mathbb{N}$ et (P_n) la propriété :

$$u_n \in I$$

Initialisation : (P_0) est vraie car $u_0 = 0.8$.

Hérédité : Soit $k \in \mathbb{N}$. On suppose (P_k) vraie (i.e. $u_k \in I$) et on veut montrer que (P_{k+1}) est vraie (i.e. $u_{k+1} \in I$).

D'après 2.c,comme $u_k \in I$ alors $g(u_k) \in I$ soit $u_{k+1} \in I$.

La propriété est donc héréditaire.

Conclusion: D'après le principe de récurrence, on a, pour tout $n \in \mathbb{N}$, $u_n \in I$. Soit $n \in \mathbb{N}$: on applique la question 1.d. à $x = u_n \in I$ et on a immédiatement :

$$|u_{n+1}-\beta| \leq \frac{1}{5}|u_n-\beta|.$$

b. Soit $n \in \mathbb{N}$ et (P_n) la propriété :

$$\left|u_n - \beta\right| \le \frac{1}{10} \times \frac{1}{5^n}$$

Initialisation : (*P*₀) est vraie car $|u_0 - \beta| < (0, 9 - 0, 8)$.

Hérédité : Soit $k \in \mathbb{N}$. On suppose (P_k) vraie (i.e. $\left|u_k - \beta\right| \le \frac{1}{10} \times \frac{1}{5^n}$) et on veut montrer que (P_{k+1}) est vraie (i.e. $\left|u_{k+1} - \beta\right| \le \frac{1}{10} \times \frac{1}{5^{k+1}}$).

En utilisant la question précédente, et comme
$$u_{k+1} \in I$$
, on a $\left|u_{k+1} - \beta\right| \leq \frac{1}{5} \left|u_k - \beta\right|$. Or, $\left|u_k - \beta\right| \leq \frac{1}{10} \times \frac{1}{5^n}$ donc $\left|u_{k+1} - \beta\right| \leq \frac{1}{10} \times \frac{1}{5^{k+1}}$: (P_{k+1}) est vraie.

La propriété est donc héréditaire.

Conclusion : D'après le principe de récurrence, on a, pour tout $n \in \mathbb{N}$,

$$\left|u_n - \beta\right| \le \frac{1}{10} \times \frac{1}{5^n}$$

c.
$$\lim_{n\to\infty} \frac{1}{10} \times \frac{1}{5^n} = 0$$
 donc $\lim_{n\to\infty} u_n = \beta$.