à rendre le lundi 18 Novembre

Devoir à la maison n°2

Groupe CCP	Exercice 1
Groupe Centrale	Exercices 2

Exercice 1

On se propose d'étudier quelques propriétés de la fonction numérique f définie sur \mathbb{R}_+^* par la relation :

$$\forall x \in \mathbb{R}_+^*, f(x) = \int_0^1 \frac{\mathrm{e}^t}{x+t} \mathrm{d}t.$$

On ne cherchera pas à calculer l'intégrale définissant f(x).

1. Rappeler la définition d'une fonction numérique décroissante sur un intervalle I de \mathbb{R} .

En déduire que f est décroissante sur \mathbb{R}_+^* .

2. Soit x_0 un réel strictement positif quelconque.

a. Montrer que :
$$\forall x \in \left[\frac{x_0}{2}; +\infty\right[, |f(x) - f(x_0)| \le \frac{2e|x - x_0|}{x_0^2}.$$

b. En déduire que f est continue au point x_0 .

3. Montrer que pour tout réel x strictement positif : $\frac{e-1}{x+1} \le f(x) \le \frac{e-1}{x}$.

En déduire : $f(x) \sim \frac{e-1}{x}$.

4. a. En utilisant l'inégalité des accroissements finis, déterminer un réel positif M tel que : $\forall t \in [0;1], |e^t - 1| \leq Mt$.

b. Soit g la fonction numérique définie sur \mathbb{R}_+^* par la relation :

$$\forall x \in \mathbb{R}_+^*, g(x) = \int_0^1 \frac{\mathrm{e}^t - 1}{x + t} \mathrm{d}t.$$

Montrer que g est bornée sur \mathbb{R}_+^* .

c. Montrer finalement : $f(x) \sim -\ln x$.

Indication: Remarquer que pour x strictement positif, $f(x) = \int_0^1 \frac{1}{x+t} dt + g(x)$.

5. Dans cette question, on se propose de déterminer une valeur approchée à 10^{-2} près de f(1).

On introduit la fonction h définie sur [0;1] par la relation :

$$\forall t \in [0; 1], h(t) = \frac{e^t}{1+t}.$$

On définit également deux suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ par :

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n} \sum_{k=0}^n h\left(\frac{k}{n}\right) \text{ et } v_n = \frac{1}{n} \sum_{k=0}^{n-1} h\left(\frac{k+1}{n}\right).$$

a. Vérifier que la fonction h est strictement croissante sur le segment [0;1].

b. Donner une interprétation graphique des réels u_n et v_n .

c. Montrer que : $\forall k \in \{0, 1, 2, ..., n-1\}$, $\frac{1}{n} h\left(\frac{k}{n}\right) \le \int_{k/n}^{(k+1)/n} h(t) dt \le \frac{1}{n} h\left(\frac{k+1}{n}\right)$

- **d.** Déduire de ce qui précède que : $\forall n \in \mathbb{N}^*, \left| f(1) \frac{u_n + v_n}{2} \right| \le \frac{h(1) h(0)}{2n}.$
- **e.** Déterminer une valeur explicite de n, notée n_0 , telle que $\frac{u_{n_0} + v_{n_0}}{2}$ soit une valeur approchée de f(1) à $\frac{10^{-2}}{2}$ près.

En déduire une valeur décimale approchée de f(1) à 10^{-2} près, de la forme $\frac{p}{100}$, où p désigne un entier naturel. On expliquera la démarche utilisée.

Exercice 2

Partie A Étude d'une fonction

On considère la fonction φ définie sur l'intervalle $I =]0; +\infty[$ par :

$$\varphi(t) = \left(t + \frac{1}{2}\right) \ln\left(1 + \frac{1}{t}\right).$$

- 1. Calculer les dérivées premières et seconde $\varphi'(t)$ et $\varphi''(t)$.
- **2**. Déterminer : $\lim_{t \to +\infty} \varphi'(t)$ et $\lim_{t \to +\infty} \varphi(t)$.
- **3**. Montrer que : $\forall t \in I$, $\varphi'(t) \leq 0$.
- **4**. En déduire que : $\forall t \in I$, $\varphi(t) \ge 1$.
- 5. Donner sous la forme $\frac{\alpha}{t^2}$, un équivalent de $\varphi(t) 1$ au voisinage de $+\infty$.

Partie B Formules de Wallis

On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt.$$

- 1. Calculer u_0 , u_1 et u_2 .
- **2.** Montrer que la suite (u_n) est décroissante puis qu'elle converge vers une limite que l'on notera ℓ .
- **3**. Établir une relation de récurrence, pour $n \ge 2$, entre u_n et u_{n+2} .
- 4. En déduire une expression, sous forme de produits, de u_{2n} et de u_{2n+1} . On donnera ensuite une expression de ces termes à l'aide de factorielles, de puissances de 2 et du nombre π .
- **5**. Montrer que, pour n:

$$u_{2n} \times u_{2n+1} = \frac{\pi}{2(2n+1)}.$$

- **6**. En déduire la valeur de ℓ .
- 7. En utilisant le fait que la suite (u_n) est décroissante, montrer que lorsque n tend vers $+\infty: u_{2n} \sim u_{2n+1}$.
- **8**. Établir, à l'aide des questions précédentes, les formules (de Wallis) : lorsque n tend vers $+\infty$:

$$u_n \sim \sqrt{\frac{\pi}{2n}}$$

et

$$\sqrt{\pi} \sim \frac{4^n (n!)^2}{(2n)! \sqrt{n}}.$$

9. Application

On considère la série entière

$$\sum_{n=0}^{\infty} \binom{2n}{n} x^n.$$

- **a.** calculer le rayon *R* de convergence de cette série entière.
- b. Déterminer la nature de la série

$$\sum \binom{2n}{n} R^n.$$

Partie C Formule de Stirling

On considère à présent la suite (v_n) définie pour tout entier naturel n par :

$$v_n = \frac{n! e^n}{n^n \sqrt{n}}$$

1. Exprimer $\ln\left(\frac{v_{n+1}}{v_n}\right)$ à l'aide de la fonction φ étudiée précédemment.

2. En déduire la nature de la série $\sum \ln \left(\frac{\nu_{n+1}}{\nu_n} \right)$.

3. Après avoir établi que, pour $n \ge 1$:

$$\sum_{k=1}^{n} \ln \left(\frac{\nu_{n+1}}{\nu_n} \right) = \ln(\nu_{n+1}) - 1$$

montrer que la suite (v_n) converge une limite positive non nulle C.

4. En déduire un équivalent, lorsque n tend vers +∞, de n! en fonction de puissance de n, de l'exponentielle et de C.

5. A l'aide de la deuxième formule de Wallis, calculer C en fonction de π .

6. En déduire la formule de Stirling :

lorsque
$$n$$
 tend vers $+\infty$, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$