Chapitre 6 : Intégration d'une fonction continue sur un intervalle.

Dans toute la suite, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Intégrales généralisées (ou impropres).

Définition 1 : intégrale impropre

Soit f une fonction continue sur un intervalle I de \mathbb{R} tel que :

- Soit *I* est non borné (du type $[a; +\infty[$ ou $]a; +\infty[$ ou $]-\infty; b]$ ou $]-\infty; b[$).
- Soit I est borné (du type] a; b] ou [a; b[ou] a; b[) sans que f soit continue en a ou en b.

Alors $\int_{I} f(t) dt$ est appelée intégrale impropre.

Exemples

$$\int_0^1 \frac{\mathrm{d}t}{t}, \qquad \int_1^{+\infty} \frac{\mathrm{d}t}{t}, \qquad \int_1^{+\infty} \frac{\mathrm{e}^{\mathrm{i}t}}{t^2} \, \mathrm{d}t \qquad \text{ sont des intégrales impropres.}$$

Définition 2 : intégrale convergente

Soit f une fonction continue sur un intervalle $[a; b[\ (b \in \mathbb{R} \text{ ou } b = +\infty).$

On dit que l'intégrale impropre $\int_a^b f(t) dt$ est convergente si $\int_a^x f(t) dt$ admet une limite finie lorsque x tend vers b.

On note alors
$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Dans le cas contraire, on dit que l'intégrale est divergente.

Remarque:

On peut donner une définition analogue pour un intervalle du type] a;b] avec $a \in \mathbb{R}$ ou $a = -\infty$.

Exemples 1

Donner la nature des intégrales impropres suivantes (pour les exemples A à D, on fera le dessin correspondant) :

$$A = \int_0^1 \ln t \, dt \qquad B = \int_1^{+\infty} \frac{dt}{t} \qquad C = \int_0^{+\infty} \sin t \, dt \qquad D = \int_{-\infty}^0 e^t \, dt$$
$$E = \int_0^1 \frac{dt}{\sqrt{1 - t^2}} \qquad F = \int_1^{+\infty} \frac{\ln t}{t} \, dt$$

Remarque:

La nature de l'intégrale impropre de f sur l'intervalle a;b ne dépend que du comportement de f en a.

Ainsi, on peut dire que l'intégrale impropre $\int_a^b f(t) dt$ est convergente si et seulement si il existe $c \in]a;b[$ tel que l'intégrale $\int_a^c f(t) dt$ soit convergente.

Chapitre 6 1 Intégration

Dans ce cas, on a, pour tout réel $c \in a$; b[, $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_a^b f(t) dt$.

Propriété 1: intégrale convergente

Soit f une fonction continue sur un intervalle ouvert] $a; b [(a; b) \in \overline{R}^2)$.

L'intégrale impropre $\int_{a}^{b} f(t) dt$ est convergente si il existe $c \in a; b[$ tel que les intégrales $\int_a^c f(t) dt = \int_a^b f(t) dt$ soient convergentes.

On note alors $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$. Dans le cas contraire, l'intégrale est divergente.

Exemples 2

Déterminer la nature des intégrales impropres $A = \int_0^{+\infty} \frac{\mathrm{d}t}{t^2} \, \mathrm{et} \, B = \int_{-\infty}^{+\infty} \mathrm{e}^t \, \mathrm{d}t.$

Propriété 2 : fonctions à valeurs complexes

Soit f une fonction à valeurs complexes continue sur un intervalle I. Alors L'intégrale impropre $\int_{t}^{t} f(t) dt$ est convergente si et seulement si les intégrales $\int_{t}^{t} \text{Re}(f(t)) dt$ et $\int_{t} \operatorname{Im}(f(t)) dt \text{ sont convergentes.}$

Dans ce cas, on a $\int_{I} f(t) dt = \int_{I} \text{Re}(f(t)) dt + i \int_{I} \text{Im}(f(t)) dt$.

2 Chapitre 6 Intégration

2 Intégrales généralisées (ou impropres) de référence

Propriété 3: intégrales de Riemann

1. L'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}t}{t^\alpha}$ est convergente si et seulement si $\alpha < 1$. Dans ce cas :

$$\int_0^1 \frac{\mathrm{d}t}{t^\alpha} = \frac{1}{1-\alpha}$$

2. L'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ est convergente si et seulement si $\alpha > 1$. Dans ce cas :

$$\int_{1}^{+\infty} \frac{\mathrm{d}\,t}{t^{\alpha}} = \frac{1}{\alpha - 1}$$

Propriété 4: fonction ln

1. L'intégrale $\int_0^1 \ln t \, dt$ est convergente et on a :

$$\int_0^1 \ln t \, \mathrm{d}t = -1$$

2. L'intégrale $\int_{1}^{+\infty} \ln t \, dt$ est divergente.

Propriété 5: fonctions exponentielles

L'intégrale $\int_0^{+\infty} e^{-\alpha t} dt$ est convergente si et seulement si $\alpha > 0$. Dans ce cas :

$$\int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}.$$

3 Théorèmes de comparaison

Dans toute la suite du paragraphe, on considère $a \in \mathbb{R}$ et $b \in \overline{R}$.

Propriété 6 : avec une inégalité

Soit f et g deux fonctions continues **et positives** sur [a;b[, telles que $f \le g$ sur [a;b[.

1. Si
$$\int_a^b f(t) dt$$
 diverge alors $\int_a^b g(t) dt$ diverge.

2. Si
$$\int_a^b g(t) dt$$
 converge alors $\int_a^b f(t) dt$ converge et $\int_a^b f(t) dt \le \int_a^b g(t) dt$

Remarque

Dans le cas où f et g sont négatives sur [a; b[on a bien sûr les résultats analogues :

1.
$$f \le g$$
 et $\int_a^b g(t) dt$ diverge $\Rightarrow \int_a^b f(t) dt$ diverge.

2.
$$f \le g$$
 et $\int_a^b f(t) dt$ converge $\Rightarrow \int_a^b g(t) dt$ converge.

Propriété 7: avec une relation d'équivalence

Soit f et g deux fonctions continues **et positives** sur [a; b[, telles que $f \sim g$.

Alors
$$\int_a^b f(t) dt$$
 et $\int_a^b g(t) dt$ sont de même nature.

Remarque

On a bien sûr le même résultat si f et g sont tous les deux négatifs sur [a; b[.

Exemples 3

Déterminer la nature des intégrales impropres suivantes :
$$A = \int_0^{+\infty} \frac{e^{-x}}{1+x^2} dx \qquad B = \int_1^{+\infty} \frac{\ln x}{1+x^2} dx \qquad C = \int_0^{+\infty} \frac{dx}{\left(1+x^2\right)\sqrt{x}}$$

$$D = \int_1^{+\infty} \frac{\ln t}{\sqrt{t}} dt$$

Intégrales absolument convergentes - fonctions intégrables

Définition 3: intégrale absolument convergente

Soit f une fonction continue sur un intervalle I, à valeurs dans \mathbb{K} . On dit que l'intégrale $\int_{t} f(t) dt$ est absolument convergente si $\int_{t} |f(t)| dt$ est convergente.

Propriété 8 : caractérisation de l'absolue convergence

Soit f une fonction continue sur un intervalle I, à valeurs dans \mathbb{K} .

Alors l'intégrale $\int f(t) dt$ est absolument convergente si et seulement si il existe un réel M >0 tel que, quel que soit le segment [a; b] inclus dans I, on ait :

$$\int_{a}^{b} \left| f(t) \right| \, \mathrm{d}t \le M.$$

Propriété 9: absolue convergence et convergence

Une intégrale absolument convergente est convergente.

Exemples 4

Montrer que les intégrales suivantes sont convergentes :

A =
$$\int_{1}^{+\infty} \frac{e^{it}}{t^2} dt$$
 $B = \int_{0}^{+\infty} \frac{dt}{(z+t)\sqrt{1+t}}$ $C = \int_{0}^{1} \sin\left(\frac{1}{t}\right) dt$

Définition 4 : fonction intégrable

Soit f une fonction continue sur un intervalle I. On dit que f est intégrable sur I si l'intégrale $\int_I f(t) \, \mathrm{d}t$ est absolument convergente.

Attention!

On a vu que toute fonction intégrable sur un intervalle I avaient une intégrale convergente sur I. La réciproque n'est pas vraie comme le montre le contre-exemple suivant (traité à l'exemple 8) :

 $\int_0^{+\infty} \frac{\sin t}{t} dt \text{ converge mais } \int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt \text{ ne converge pas, c'est-à-dire que } t \mapsto \frac{\sin t}{t} \text{ n'est pas intégrable sur } [0; +\infty[.$

5 Propriétés de l'intégrale généralisée

Propriété 10: linéarité

- 1. L'ensemble des applications f continues sur un intervalle I telles que $\int_I f(t) \, \mathrm{d}t$ converge est un sous-espace vectoriel de l'ensemble des applications continues sur I.
- **2.** Pour tout f et g continues sur I telles que les intégrales sur I de f et g convergent, et quels que soient les scalaires λ et μ , on a :

$$\int_{I} (\lambda f + \mu g)(t) dt = \lambda \int_{I} f(t) dt + \mu \int_{I} g(t) dt.$$

- 3. L'ensemble $L_1(I, \mathbb{K})$ des applications continues et intégrables sur I, à valeurs dans \mathbb{K} est un sous-espace vectoriel de l'ensemble des applications continues sur I.
- **4.** L'application : $\begin{cases} L_1(I,\mathbb{K}) & \to & \mathbb{K} \\ f & \mapsto & \int_I f(t) \, \mathrm{d}t \end{cases}$ est une forme linéaire sur $L_1(I,\mathbb{K})$.

Propriété 11 : relation de Chasles

Soit I et J deux intervalles tels que $I \cup J$ soit un intervalle et tels que $I \cap J$ soit vide ou réduit à un point. Soit f une fonction continue et intégrable sur I et J. Alors f est intégrable sur $I \cup J$ et :

$$\int_{I \cup I} f(t) dt = \int_{I} f(t) dt + \int_{I} f(t) dt$$

Propriété 12 : intégrale nulle

Soit f une fonction continue, positive et intégrable sur un intervalle I. Alors $\int_I f(t) \, \mathrm{d}t = 0$ si et seulement si f est nulle sur I.

Propriété 13: inégalité de la moyenne

Soit *f* une fonction continue et intégrable sur un intervalle *I*. Alors :

$$\left| \int_{I} f(t) \, \mathrm{d}t \right| \leq \int_{I} \left| f(t) \right| \, \mathrm{d}t$$

Propriété 14: changement de variable

Soit f une fonction continue sur un intervalle]a,b[, avec a et b des éléments de $\overline{\mathbb{R}}$, soit φ une fonction strictement croissante, de classe C^1 de $]\alpha;\beta[$ sur]a;b[, tels que $\lim_{u\to\alpha}\varphi(u)=a$ et $\lim_{u\to\beta}\varphi(u)=b$. Alors :

1.
$$\int_a^b f(t) dt$$
 et $\int_a^\beta f(\varphi(u)) \times \varphi'(u) du$ sont de même nature.

2. Si ces deux intégrales convergent, alors
$$\int_a^b f(t) dt = \int_a^\beta f(\varphi(u)) \times \varphi'(u) du$$
.

Remarque

Si φ est décroissante, on a le même résultat. Il faut simplement faire attention à l'ordre des bornes, mais comme φ' va apparaître négatif, elles seront facilement remises dans le "bon ordre".

Exemples 5

1. **a.** Montrer que l'intégrale
$$A = \int_{-1}^{1} \frac{\mathrm{d}x}{(2-x^2)\sqrt{1-x^2}}$$
 est une intégrale convergente.

b. En posant
$$x = \sin t$$
, montrer que $A = \int_{-\pi/2}^{\pi/2} \frac{\mathrm{d}t}{1 + \cos^2 t}$.

c. En posant
$$u = \tan t$$
, montrer que $A = \int_{-\infty}^{+\infty} \frac{\mathrm{d}u}{2 + u^2}$ puis que $A = \frac{\pi}{\sqrt{2}}$.

2. Montrer que l'intégrale
$$B = \int_1^{+\infty} \frac{\sin x}{x^2} dx$$
 est convergente, puis que $B = \int_0^1 \sin\left(\frac{1}{t}\right) dt$.

Méthode: intégration par parties

Exemple

Soit
$$A = \int_0^1 \frac{\ln t}{(1+t)^2} dt$$
.

La fonction $f: t \mapsto -\frac{\ln t}{(1+t)^2}$ est une fonction continue et positive sur]0;1].

 $f \sim -\ln t$ et $\int_0^1 \ln t \, dt$ est une intégrale convergente.

On en déduit A est une intégrale convergente.

On pose
$$\begin{cases} v(t) = \ln t \\ u'(t) = \frac{1}{(1+t)^2} \end{cases}$$
 On a donc
$$\begin{cases} v'(t) = \frac{1}{t} \\ u(t) = \frac{-1}{1+t} \end{cases}$$

Les fonctions u et v sont de classe C^1 sur]0;1]:

La formule d'intégration par parties donne $A = \left[\frac{-\ln t}{1+t}\right]_0^1 + \int_0^1 \frac{dt}{t(t+1)}$.

Or les deux termes du membre de droite ne sont pas réels :

$$-\lim_{t \to 0^+} \frac{\ln t}{1+t} = -\infty$$

—
$$\frac{1}{t(t+1)} \sim \frac{1}{t}$$
 et l'intégrale $\int_0^1 \frac{\mathrm{d}t}{t}$ n'est pas convergente.

Ne pas pratiquer l'intégration par parties sur] a; b]!!!!

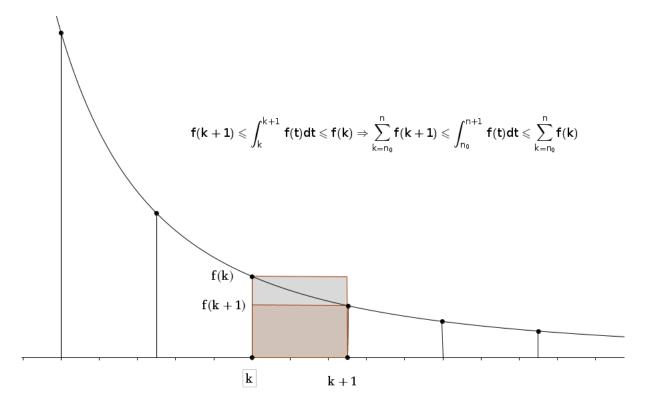
- **1**. Choisir *X* dans] *a*; *b*].
- **2**. Pratiquer l'IPP sur l'intervalle [X; b].
- **3**. Faire tendre *X* vers *a*.

6 Comparaison série/intégrale

Propriété 15: comparaison série-intégrale

Soit n_0 un entier naturel et $f:[n_0,+\infty[$ une fonction continue, positive et décroissante. Alors $\sum f(n)$ et $\int_{n_0}^{+\infty} f(t) dt$ sont de même nature.

Illustration graphique



Remarque:

On n'utilisera pas ce théorème de manière "brute", mais on cherchera à reconstruire le raisonnement à chaque fois que l'on devra l'utiliser.

Exemple 6 : divergence de la série harmonique (v3)

On note (H_n) la suite des sommes partielles de la série harmonique.

1. Soit k un entier naturel non nul. Montrer que

$$\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{1}{t} \mathrm{d}t \leqslant \frac{1}{k}$$

2. En déduire que pour tout entier *n* naturel non nul :

$$H_n - 1 \leqslant \ln n \leqslant H_n - \frac{1}{n}$$

3. Conclure quant à la divergence de la série harmonique.

Exemple 7:

Montrer que $\sum \frac{1}{n \ln n}$ diverge et donner un équivalent en l'infini de sa somme partielle.

Remarque : D'une manière générale, et même si l'on n'est pas dans les conditions d'application du théorème, il faut retenir que les encadrements permettent de faire un lien entre séries et intégrales.

Exemple 8:

- 1. Par une intégration par partie, montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
- 2. (*)On veut étudier la convergence de l'intégrale $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$.
 - **a.** Soit un entier naturel *n* non nul. Montrer que

$$\frac{2}{(n+1)\pi} \leqslant \int_{n\pi}^{(n+1)\pi} \left| \frac{\sin t}{t} \right| dt$$

b. En déduire la divergence de $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$.

Exemple 9: (*)

Déterminer la limite de la suite de terme général $S_n = \sum_{k=1}^n \frac{k^2}{n^3}$.