TD Chapitre 6 : Intégration

Exercice 1

Étudier la convergence des intégrales suivantes, et calculer leur valeur dans les cas de convergence.

$$1. A = \int_0^{+\infty} e^{-t} dt$$

2.
$$B = \int_0^{+\infty} 1 \, dt$$

3.
$$C = \int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t}}$$

4.
$$D = \int_{1}^{+\infty} \frac{t}{(1+t^2)^2} dt$$

$$5. E = \int_0^{+\infty} t e^{-t} dt$$

6.
$$F = \int_{-\infty}^{0} t e^{-t^2} dt$$

7.
$$G = \int_0^{+\infty} \frac{t}{1+t^2} dt$$

8.
$$H = \int_{\pi}^{+\infty} \left(2 - \frac{1}{x^2}\right) dx$$

9.
$$I = \int_{2}^{+\infty} \frac{\mathrm{d}t}{t \ln t} (*)$$

10.
$$J = \int_{2}^{+\infty} \frac{\mathrm{d}t}{t \ln t \ln (\ln t)} (*)$$

Exercice 2

Déterminer si les intégrales suivantes sont convergentes :

1.
$$A = \int_0^{+\infty} \frac{2 + \ln t}{t + 4} dt$$

$$2. B = \int_1^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$

3.
$$C = \int_0^{+\infty} \frac{t-5}{t^2+4t+4} dt$$

4.
$$D = \int_{1}^{2} \frac{1}{t^2 - t} dt$$

$$5. E = \int_{1}^{+\infty} \frac{\ln t}{t^2} dt$$

$$6. F = \int_0^{+\infty} \frac{\sin t}{t^2} dt$$

7.
$$G = \int_0^1 \frac{\ln t}{t - 1} dt$$

8.
$$H = \int_0^{+\infty} e^{-t^2} dt$$

$$9. \ I = \int_0^1 \frac{1}{\sqrt{t^4 + 3t^2 + t}} dt$$

Exercice 3

On considère l'intégrale $I = \int_0^{+\infty} \frac{dt}{1+t^3}$

1. Montrer que pour
$$t \in \mathbb{R}_+$$
, on a $\frac{1}{1+t^3} = \frac{1}{3} \left(\frac{1}{1+t} - \frac{t-2}{t^2-t+1} \right)$.

2. Soit
$$A > 0$$
. En déduire qu'une primitive de $\frac{1}{1+t^3}$ sur $[0; A]$ est

$$\frac{1}{3}\left(\ln\left(1+t\right) - \frac{1}{2}\ln\left(t^2 - t + 1\right) + \sqrt{3}\operatorname{Arctan}\left(\frac{2t-1}{\sqrt{3}}\right)\right).$$

3. En déduire que I est convergente et calculer I.

Exercice 4(*)

Soit u et v deux réels.

- 1. Montrer que l'intégrale $\beta(u, v) = \int_0^{+\infty} \frac{t^{u-1}}{(1+t)^{u+v}} dt$ est convergente si et seulement si u et v sont strictement positifs.
- **2**. Soit u et v deux réels strictement positifs. Démontrer successivement les égalités suivantes :

a.
$$\beta(u+1, v) = \frac{u}{u+v}\beta(u, v)$$

b.
$$\beta(u,v) = \int_0^1 (1-t)^{u-1} t^{v-1} dt$$

c.
$$\beta(u, v) = \beta(v, u)$$

- **3**. Soit *a* un réel strictement positif.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, on a $\beta(n+1,a) = \frac{n!}{a(a+1)(a+2)...(a+n)}$
 - **b.** Soit $n \in \mathbb{N}^*$. Justifier que l'intégrale $I_n(a) = \int_0^n \left(1 \frac{t}{n}\right)^n t^{a-1} dt$ est convergente, et calculer sa valeur.

Exercice 5

Montrer que l'intégrale $I = \int_0^{+\infty} \frac{1 - x^2}{(1 + x^2)^2} dx$ converge, puis montrer que I = 0.

On pourra faire le changement de variables $t = \frac{1}{x}$.

Exercice 6

Montrer que l'intégrale $I = \int_0^{+\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$ converge, puis montrer que I = 2.

Exercice 7

Pour tout entier naturel n, on pose $I_n = \int_0^{+\infty} \ln(x+n)e^{-nx} dx$.

- 1. Montrer que I_0 est divergente.
- **2**. Montrer que pour tout n > 0, I_n est convergente.
- **3**. Montrer que pour tout n > 1, on a $I_n \ge \frac{\ln n}{n}$.
- 4. Étudier la nature de la série de terme général I_n .
- 5. **a.** Montrer que $I_n = \frac{\ln n}{n} + \frac{1}{n} \int_0^{+\infty} \frac{e^{-nx}}{x+n} dx$.
 - **b.** Montrer que $\int_0^{+\infty} \frac{e^{-nx}}{x+n} dx \le \frac{1}{n^2}.$
 - **c.** En déduire que I_n est équivalent à $\frac{\ln n}{n}$ en $+\infty$.

Exercice 8(*)

- 1. Montrer que $I = \int_0^{+\infty} \frac{\sin t}{t} dt$ est convergente
- **2**. **a.** Justifier que pour tout $t \ge 1$, on a $|\sin t| \ge \sin^2 t$.
 - **b.** En déduire que pour tout $x \ge 1$, on a $\int_1^{+\infty} \left| \frac{\sin t}{t} \right| dt \ge \int_1^{+\infty} \frac{1 \cos(2t)}{2t} dt$.
 - **c.** A l'aide d'une intégration par parties, montrer que $\int_1^{+\infty} \frac{\cos(2t)}{2t} dt$ est une intégrale convergente.
 - d. En déduire que l'intégrale I n'est pas absolument convergente.
- 3. On admet que $I = \frac{\pi}{2}$. Pour $a \in \mathbb{R}$, montrer que $I_a = \int_0^{+\infty} \frac{\sin(at)}{t} dt$ est une intégrale convergente et montrer que $\int_0^{+\infty} \frac{\sin(at)}{t} dt = \begin{cases} -\frac{\pi}{2} & \text{si } a < 0 \\ 0 & \text{si } a = 0 \\ \frac{\pi}{2} & \text{si } a > 0 \end{cases}$
- **4. a.** Montrer que $J = \int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$ est une intégrale convergente.
 - **b.** Soit $0 < \epsilon < x$. A l'aide d'une intégration par parties, montrer que $\int_{\epsilon}^{x} \frac{\sin^{2} t}{t^{2}} dt = \left[-\frac{\sin^{2} t}{t} \right]_{\epsilon}^{x} + \int_{\epsilon}^{x} \frac{\sin(2t)}{t} dt.$
 - **c.** En déduire que $J = I_2 = \frac{\pi}{2}$.

Exercice 9

Pour chacune des intégrales suivantes, établir la convergence et les calculer.

$$1. \int_0^{+\infty} \frac{\ln t}{1+t^2} \, \mathrm{d}t \left(u = \frac{1}{t} \right).$$

2.
$$\int_{a}^{b} \frac{1}{\sqrt{(b-x)(x-a)}} dx \left(x = \frac{a+b}{2} + u \frac{b-a}{2}\right)$$
.

3.
$$\int_0^1 \frac{\ln(1-t^2)}{t^2} dt \left(u = \frac{1}{t}\right)$$
.

4.
$$\int_0^1 \frac{t^3}{\sqrt{1-t^2}} \, \mathrm{d}t \ (t = \sin u).$$

Exercice 10(*)

Pour
$$n \in \mathbb{N}^*$$
, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n}$.

- 1. Montrer que I_n est une intégrale convergente.
- **2**. Calculer I_1 .

3. Pour
$$n \ge 2$$
, montrer que $I_n = I_{n-1} - \int_0^{+\infty} \frac{t^2}{(1+t^2)^n} dt$

4. En déduire que
$$I_n = I_{n-1} - \frac{1}{2(n-1)}I_{n-1}$$
.

5. Montrer par récurrence que pour tout
$$n \ge 2$$
, $I_n = \frac{(2n-2)!}{2^{2n-2}((n-1)!)^2} \frac{\pi}{2}$.

3