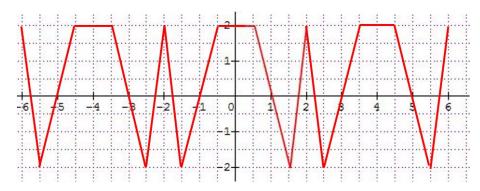
Chapitre 8: CORRECTION DES EXEMPLES

Exemple 1



Exemples 2

1. Représentation graphique :



f est continue par morceaux, $2 - \pi$ périodique et $\omega = 1$.

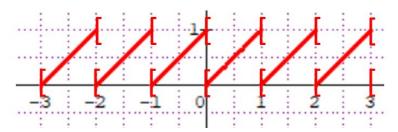
Abstraction faite d'un ensemble discret, la fonction f est impaire donc on a, $\forall n \in \mathbb{N}, a_n(f) = 0.$

Soit $n \in \mathbb{N}^*$, on a, pour la même raison, $b_n(f) = \frac{4}{2\pi} \int_0^{\pi} f(t) \sin(nt) dt$.

Sur
$$[0; \pi[$$
, on a $f(t) = 1$ donc

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} \sin(nt) dt = \frac{2}{\pi} \left[-\frac{\cos(nt)}{n} \right]_0^{\pi} = -\frac{2}{\pi} \times \frac{\cos(n\pi) - 1}{n} = \frac{2(1 - (-1)^n)}{\pi n}.$$

2. Représentation graphique :



f est continue par morceaux, 1 périodique et $\omega = 2\pi$.

Calcul de $a_0(f)$:

$$a_0(f) = \frac{1}{1} \int_0^1 f(t) dt.$$

Sur [0;1], on a
$$f(t) = t$$
 donc $a_0(f) = \int_0^1 t dt = \left[\frac{t^2}{2}\right]_0^1 = \frac{1}{2}$.

Calcul des $a_n(f)$:

Soit
$$n \in \mathbb{N}^*$$
: $a_n(f) = \frac{2}{1} \int_0^1 f(t) \cos(2n\pi t) dt$.

Sur [0;1], on a
$$f(t) = t$$
 donc $a_n(f) = \int_0^1 t \cos(2n\pi t) dt$.

Pour $t \in [0;1]$, on pose u(t) = t et $v'(t) = \cos(2n\pi t)$.

On a donc u'(t) = 1 et $v(t) = \frac{\sin(2n\pi t)}{2n\pi}$. Les fonctions u et v sont de classe C^1 sur [0;1] et d'après la formule d'IPP, on a :

$$a_n(f) = 2 \left[\frac{t \sin(2n\pi t)}{2n\pi} \right]_0^1 - \frac{2}{2n\pi} \int_0^1 \sin(2n\pi t) dt$$

$$a_n(f) = 0 - \frac{1}{n\pi} \times \left[-\frac{\cos(2n\pi)}{2n\pi} \right]_0^1 = \frac{1}{2n^2\pi^2} (\cos(2\pi) - \cos 0) = 0.$$

Calcul des $b_n(f)$:

Soit $n \in \mathbb{N}^*$: $b_n(f) = \frac{2}{1} \int_0^1 f(t) \sin(2n\pi t) dt$.

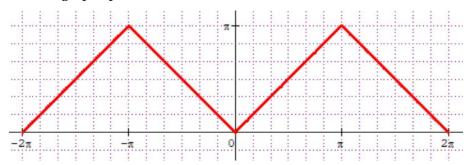
Sur [0;1], on a f(t) = t donc $b_n(f) = \int_0^1 t \sin(2n\pi t) dt$.

On a donc
$$u'(t) = 1$$
 et $v(t) = -\frac{\cos(2n\pi t)}{2n\pi}$.

Pour
$$t \in [0;1]$$
, on pose $u(t) = t$ et $v'(t) = \sin(2n\pi t)$.
On a donc $u'(t) = 1$ et $v(t) = -\frac{\cos(2n\pi t)}{2n\pi}$.
Les fonctions u et v sont de classe C^1 sur $[0;1]$ et d'après la formule d'IPP, on a :
$$b_n(f) = 2\left[-\frac{t\cos(2n\pi t)}{2n\pi}\right]_0^1 + \frac{2}{2n\pi}\int_0^1\cos(2n\pi t)dt$$

$$b_n(f) = -\frac{1}{n\pi} + \frac{1}{n\pi} \times \left[\frac{\sin(2n\pi)}{2n\pi}\right]_0^1 = -\frac{1}{n\pi} + \frac{1}{2n^2\pi^2}(\sin(2\pi) - \sin 0) = -\frac{1}{n\pi}.$$

3. Représentation graphique :



f est continue par morceaux, $2 - \pi$ périodique et $\omega = 1$.

Calcul de $a_0(f)$:

La fonction f étant paire, on a $a_0(f) = \frac{2}{2\pi} \int_0^{\pi} f(t) dt$.

Sur
$$[0; \pi]$$
, on a $f(t) = t$ donc $a_0(f) = \frac{1}{\pi} \int_0^{\pi} t dt = \frac{1}{\pi} \left[\frac{t^2}{2} \right]_0^{\pi} = \frac{1}{\pi} \times \frac{\pi^2}{2} = \frac{\pi}{2}$.

Calcul des $a_n(f)$:

Soit $n \in \mathbb{N}^*$. La fonction f étant paire, on a $a_n(f) = \frac{4}{2\pi} \int_0^1 f(t) \cos(nt) dt$.

Sur
$$[0;\pi]$$
, on a $f(t) = t$ donc $a_n(f) = \frac{2}{\pi} \int_0^{\pi} t \cos(nt) dt$.

Pour $t \in [0; \pi]$, on pose u(t) = t et $v'(t) = \cos(nt)$.

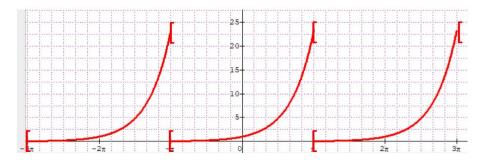
On a donc
$$u'(t) = 1$$
 et $v(t) = \frac{\sin(nt)}{n}$.

Les fonctions
$$u$$
 et v sont de classe C^1 sur $[0;\pi]$ et d'après la formule d'IPP, on a :
$$a_n(f) = \frac{2}{\pi} \left[\frac{t \sin(nt)}{n} \right]_0^{\pi} - \frac{2}{\pi} \times \frac{1}{n} \int_0^{\pi} \sin(nt) dt$$
$$a_n(f) = 0 - \frac{2}{n\pi} \times \left[-\frac{\cos(nt)}{n} \right]_0^{\pi} = \frac{2}{n^2\pi} (\cos(n\pi) - \cos 0) = 2 \frac{(-1)^n - 1}{\pi n^2}.$$

Calcul des $b_n(f)$:

La fonction f étant paire, on a $b_n(f) = 0$ pour tout $n \in \mathbb{N}^*$.

4. Représentation graphique :



f est continue par morceaux, $2 - \pi$ périodique et $\omega = 1$.

Calcul de $a_0(f)$:

$$a_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$

Sur
$$[-\pi; \pi[$$
, on a $f(x) = e^x$ donc $a_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x dx = \frac{1}{2\pi} \left[e^x \right]_{-\pi}^{\pi} = \frac{e^{\pi} - e^{-\pi}}{2\pi} = \frac{\sinh \pi}{\pi}$.

Calcul simultané des
$$a_n(f)$$
 et $b_n(f)$:

Soit $n \in \mathbb{N}^*$: $a_n(f) = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$ et $b_n(f) = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$ donc $a_n(f) = \operatorname{Re} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx \right)$ et $b_n(f) = \operatorname{Im} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx \right)$.

Sur $[-\pi; \pi[$, on a $f(x) = e^{nx}$. On calcule $I_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{n(1+i)x} dx$.

 $I_n = \frac{1}{n\pi(1+i)} \left[e^{n(1+i)x} \right]_{-\pi}^{\pi} = \frac{1}{n\pi(1+i)} \left(e^{n(1+i)\pi} - e^{-n(1+i)\pi} \right)$

Donc $I_n = \frac{1}{n\pi(1+i)} \left(e^{n\pi} e^{ni\pi} - e^{-n\pi} e^{-ni\pi} \right)$

Or, $\forall n \in \mathbb{N}$, on a $e^{ni\pi} = \left(e^{i\pi} \right)^n = (-1)^n$ donc

 $I_n = \frac{2(-1)^n}{n\pi(1+i)} (e^{n\pi} - e^{-n\pi}) = \frac{4(-1)^n \operatorname{sh}(n\pi)}{n\pi(1+i)} = \frac{4(-1)^n \operatorname{sh}(n\pi)(1-i)}{2n\pi}$.

D'où $a_n = \frac{2(-1)^n \operatorname{sh}(n\pi)}{n\pi}$ et $b_n = \frac{2(-1)^{n+1} \operatorname{sh}(n\pi)}{n\pi}$.

Exemples 3

1. La fonction f étudiée au 1. de l'exemple 2 est continue par morceaux et $2-\pi$ périodique. Ainsi, elle vérifie les hypothèses de l'égalité de Parseval et, comme $a_n(f) = 0$ pour tout entier n, on a :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t))^2 dt = \frac{1}{2} \sum_{n=1}^{+\infty} (b_n(f))^2$$

D'une part, on a f(t) = -1 sur $[-\pi; 0]$ et f(t) = 1 sur $[0; \pi[$ donc $(f(t))^2 = 1$ sur $[-\pi; \pi]$ et donc $\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t))^2 dt = 1$.

D'autre part, on a montré que $\forall n \in \mathbb{N}^*$, $b_n = \frac{2(1-(-1)^n)}{\pi n}$ donc pour n pair, on a $b_n = 0$ et pour n impair égal à 2p + 1, on a $b_{2p+1} = \frac{\pi}{(2p+1)\pi}$

D'après l'égalité de Parseval, on a donc :

$$1 = \frac{16}{2\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

soit:

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

2. La fonction f étudiée au 3. de l'exemple 2 est continue par morceaux et $2 - \pi$ périodique. Ainsi, elle vérifie les hypothèses de l'égalité de Parseval et, comme $b_n(f) = 0$ pour tout entier *n* non nul, on a :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t))^2 dt = (a_0(f))^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n(f))^2$$

D'une part, on a f(t) = -t sur $[-\pi; 0]$ et f(t) = t sur $[0; \pi[$ donc $(f(t))^2 = t^2$ sur $[-\pi; \pi]$ et donc $\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t))^2 dt = \frac{1}{2\pi} \left[\frac{t^3}{3} \right]_{-\pi}^{\pi} = \frac{\pi^2}{3}$.

D'autre part, on a montré que $\forall n \in \mathbb{N}^*$, $a_n = 2\frac{(-1)^n - 1}{\pi n^2}$ donc pour n pair, on a $a_n = 0$ et pour n impair égal à 2p + 1, on a $a_{2p+1} = \frac{1}{(2p+1)^4 \pi}$.

D'après l'égalité de Parseval, on a donc :

$$\frac{\pi^2}{3} = \frac{\pi^2}{4} + \frac{16}{2\pi^4} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

soit:

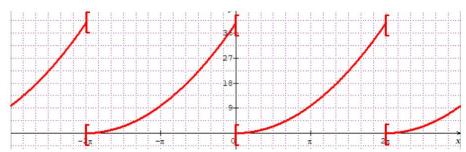
$$\frac{\pi^2}{8} \left(\frac{\pi^2}{3} - \frac{\pi^2}{4} \right) = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

et donc:

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$

Exemples 4

1. Représentation graphique :



a. f est continue par morceaux, $2 - \pi$ périodique et $\omega = 1$.

Calcul de $a_0(f)$:

$$a_0(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt.$$

Sur
$$[0; 2\pi[$$
, on a $f(t) = t^2$ donc $a_0(f) = \frac{1}{2\pi} \int_0^{2\pi} t^2 dt = \frac{1}{2\pi} \left[\frac{t^3}{3} \right]_0^{2\pi} = \frac{4\pi^2}{3}$.

Calcul des $a_n(f)$:

Soit
$$n \in \mathbb{N}^*$$
: $a_n(f) = \frac{2}{2\pi} \int_0^{2\pi} f(t) \cos(nt) dt$.

Sur $[0;2\pi[$, on a $f(t)=t^2$ donc $a_n(f)=\frac{1}{\pi}\int_0^{2\pi}t^2\cos(nt)\mathrm{d}t.$ On va procéder par double intégration par parties successives

Pour $t \in [0; 2\pi]$, on pose $u(t) = t^2$ et $v'(t) = \cos(nt)$. On a donc u'(t) = 2t et $v(t) = \frac{\sin(nt)}{n}$.

On a donc
$$u'(t) = 2t$$
 et $v(t) = \frac{\sin(nt)}{n}$.

Les fonctions u et v sont de classe C^1 sur $[0;2\pi]$ et d'après la formule d'IPP, on a :

$$a_n(f) = \frac{1}{\pi} \left[\frac{t^2 \sin(nt)}{n} \right]_0^{2\pi} - \frac{1}{\pi} \times \frac{2}{n} \int_0^{2\pi} t \sin(nt) dt$$
$$= 0 - \frac{2}{n\pi} \int_0^{2\pi} t \sin(nt) dt$$

Pour calculer l'intégrale $I_n = \int_0^{2\pi} t \sin(nt) dt$, on refait une IPP:

Pour
$$t \in [0; 2\pi]$$
, on pose $u(t) = t$ et $v'(t) = \sin(nt)$.
On a donc $u'(t) = 1$ et $v(t) = -\frac{\cos(nt)}{n}$.

Les fonctions
$$u$$
 et v sont de classe C^1 sur $[0;2\pi]$ et d'après la formule d'IPP, on a :
$$I_n = \left[-\frac{t\cos(nt)}{n}\right]_0^{2\pi} + \frac{1}{n}\int_0^{2\pi}\cos(nt)\mathrm{d}t$$

$$I_n = -\frac{2\pi}{n} + \frac{1}{n^2}\left[\sin(nt)\right]_0^{2^pi} = -\frac{2\pi}{n}.$$
 Donc $a_n(f) = -\frac{2}{n\pi} \times -\frac{2\pi}{n} = \frac{4}{n^2}.$

Calcul des $b_n(f)$:

Soit
$$n \in \mathbb{N}^*$$
: $b_n(f) = \frac{2}{2\pi} \int_0^{2\pi} f(t) \sin(nt) dt$.

Sur $[0; 2\pi[$, on a $f(t) = t^2$ donc $b_n(f) = \frac{1}{\pi} \int_0^{2\pi} t^2 \sin(nt) dt$. On va procéder par double intégration par parties successives

Pour
$$t \in [0; 2\pi]$$
, on pose $u(t) = t^2$ et $v'(t) = \sin(nt)$.
On a donc $u'(t) = 2t$ et $v(t) = -\frac{\cos(nt)}{n}$.

On a donc
$$u'(t) = 2t$$
 et $v(t) = -\frac{\cos(nt)}{n}$.
Les fonctions u et v sont de classe C^1 sur $[0; 2\pi]$ et d'après la formule d'IPP, on a :
$$b_n(f) = \frac{1}{\pi} \left[-\frac{t^2 \cos(nt)}{n} \right]_0^{2\pi} + \frac{1}{\pi} \times \frac{2}{n} \int_0^{2\pi} t \cos(nt) dt$$
$$= -\frac{4\pi^2}{n\pi} + \frac{2}{n\pi} \int_0^{2\pi} t \cos(nt) dt$$

Pour calculer l'intégrale $I_n = \int_0^{2\pi} t \cos(nt) dt$, on refait une IPP:

Pour $t \in [0; 2\pi]$, on pose u(t) = t et $v'(t) = \cos(nt)$.

On a donc
$$u'(t) = 1$$
 et $v(t) = \frac{\sin(nt)}{n}$.

Les fonctions u et v sont de classe C^1 sur $[0;2\pi]$ et d'après la formule d'IPP, on a : $I_n = \left[\frac{t\sin(nt)}{n}\right]_0^{2\pi} - \frac{1}{n}\int_0^{2\pi}\sin(nt)\mathrm{d}t$

$$I_n = \left[\frac{t\sin(nt)}{n}\right]_0^{2\pi} - \frac{1}{n} \int_0^{2\pi} \sin(nt) dt$$

$$I_n = 0 + \frac{1}{n^2} [\cos(nt)]_0^{2\pi} = 0.$$

Donc
$$b_n(f) = -\frac{4\pi}{n}$$
.

Donc $b_n(f) = -\frac{4\pi}{n}$. La série de Fourier de f s'écrit donc :

$$S_f(x) = \frac{4\pi^2}{3} + \sum_{n=1}^{+\infty} \frac{4}{n^2} \cos(nx) + \frac{-4\pi}{n} \sin(nx)$$

Cette fonction étant 2π périodique et de classe C^1 par morceaux sur \mathbb{R} , on peut appliquer le théorème de Dirichlet. La série de Fourier de f en x converge vers f(x) si f est continue en x (donc si $x \in \mathbb{R} \setminus \{2n\pi; n \in \mathbb{Z}\}$ et vers

$$\frac{f(x+0)+f(x-0)}{2} = \frac{4\pi^2}{2} \text{ si } f \text{ n'est pas continue en } x \text{ (donc si } x \in \{2n\pi; n \in \mathbb{Z}\}.$$

b. Ces deux séries sont des séries de Riemann convergentes.

Pour la première série, on applique l'égalité établie à la question précédente avec x=0:

$$\frac{4\pi^2}{2} = \frac{4\pi^2}{3} + \sum_{n=1}^{+\infty} \frac{4}{n^2}, \text{ soit } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{2} - \frac{\pi^2}{3} = \frac{\pi^2}{6}.$$

Pour la seconde série, on applique l'égalité de Parseval à f, qui est bien continue par morceaux sur ℝ donc qui vérifie ses hypothèses, et on a :

$$\frac{1}{2\pi} \int_0^{2\pi} (f(x))^2 dx = \left(\frac{4\pi^2}{3}\right)^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(\left(\frac{4}{n^2}\right)^2 + \left(\frac{4\pi}{n}\right)^2 \right).$$

D'une part, on a $f(x) = x^2 \sup_{x \to 0} [0; 2\pi[\text{donc} (f(x))^2 = x^4 \sup_{x \to 0} [0; \pi[\text{et donc} (f(x)]^2 = x^4 \sup_{x \to 0} [0; \pi[\text{et donc} (f(x)]^2 = x^4 \sup_{x \to 0} [0; \pi[\text{et donc} (f(x)]^2 = x$

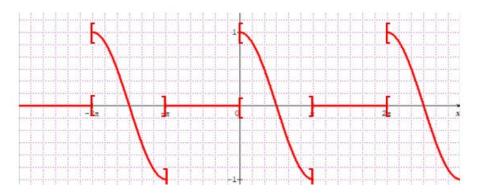
$$\frac{1}{2\pi} \int_0^{2\pi} (f(x))^2 dx = \frac{1}{2\pi} \left[\frac{t^5}{5} \right]_{2\pi}^{\pi} = \frac{16\pi^4}{5}.$$
 D'autre part, les deux séries qui composent le second membre étant

convergentes, ce second membre est égal à $\frac{16\pi^4}{9} + 8\sum_{n=1}^{+\infty} \frac{1}{n^4} + 8\pi^2\sum_{n=1}^{+\infty} \frac{1}{n^2}$, soit, en appliquant l'égalité de Parseval et en utilisant le résultat précédent : $\frac{16\pi^4}{16\pi^4} = \frac{16\pi^4}{16\pi^4} = \frac{16\pi^4}{16\pi^4$

$$\frac{16\pi^4}{5} = \frac{16\pi^4}{9} + 8\sum_{n=1}^{+\infty} \frac{1}{n^4} + 8\pi^2 \times \frac{\pi^2}{6}, \text{ soit :}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

2. Représentation graphique :



a. f est continue par morceaux, $2 - \pi$ périodique et $\omega = 1$.

Calcul de
$$a_0(f)$$
:

$$a_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt.$$

on a f(t) = 0 et sur $[0; \pi]$, on a $f(t) = \cos t$ donc

$$a_0(f) = \frac{1}{2\pi} \int_0^{pi} \cos t dt = \frac{1}{2\pi} \left[\sin t \right]_0^{\pi} = 0.$$

Calcul des
$$a_n(f)$$
:
Soit $n \in \mathbb{N}^*$: $a_n(f) = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$.
Sur] $-\pi$; 0[, on a $f(t) = 0$ et sur $[0; \pi]$, on a $f(t) = \cos t$ donc $a_n(f) = \frac{1}{\pi} \int_0^{\pi} \cos t \cos(nt) dt$.

$$a_n(f) = \frac{1}{\pi} \int_0^{\pi} \cos t \cos(nt) dt.$$

On cherche à linéariser le produit $\cos t \cos(nt)$:

Pour a et b réels, on a $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et $\cos(a-b) = \cos a \cos b + \sin a \sin b$ donc $\cos a \cos b = \frac{\cos(a+b) + \cos(a-b)}{2}$.

On a donc $a_n(f) = \frac{1}{2\pi} \int_0^{\pi} \cos[(n+1)t] dt + \frac{1}{2\pi} \int_0^{\pi} \cos[(n-1)t] dt$.

On calcule la première intégrale :
$$\frac{1}{2\pi} \int_0^{\pi} \cos\left[(n+1)t\right] dt = \frac{1}{2\pi} \left[\frac{\sin\left[(n+1)t\right]}{n+1}\right]_0^{\pi} = 0.$$

Pour la seconde intégrale, on doit distinguer les cas n = 1 et $n \neq 1$.

Pour
$$n=1$$
, l'intégrale est égale à $\frac{1}{2\pi}\int_0^\pi \mathrm{d}t = \frac{1}{2}$.
Pour $n\neq 1$, l'intégrale est égale à $\frac{1}{2\pi}\int_0^\pi \cos\left[(n-1)\,t\right]\mathrm{d}t = \frac{1}{2\pi}\left[\frac{\sin\left[(n-1)\,t\right]}{n-1}\right]_0^\pi = 0$.
Donc $a_n(f)=0$ pour $n>1$ et $a_1(f)=\frac{1}{2}$.

Calcul des $b_n(f)$:

Soit
$$n \in \mathbb{N}^*$$
: $b_n(f) = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$.
Sur] $-\pi$; 0[, on a $f(t) = 0$ et sur $[0; \pi]$, on a $f(t) = \cos t$ donc

$$a_n(f) = \frac{1}{\pi} \int_0^{\pi} \cos t \sin(nt) dt.$$

On cherche à linéariser le produit $\cos t \sin(nt)$:

Pour a et b réels, on a $\sin(a+b) = \sin a \cos b + \cos a \sin b$ et

$$\sin(a-b) = \sin a \cos b - \cos a \sin b \text{ donc } \sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2}$$

On a donc
$$b_n(f) = \frac{1}{2\pi} \int_0^{\pi} \sin[(n+1)t] dt + \frac{1}{2\pi} \int_0^{\pi} \sin[(n-1)t] dt$$
.

On calcule la première intégrale :

$$\frac{1}{2\pi} \int_0^{\pi} \sin\left[(n+1)t\right] dt = -\frac{1}{2\pi} \left[\frac{\cos\left[(n+1)t\right]}{n+1} \right]_0^{\pi} = -\frac{1}{2\pi} \frac{(-1)^{n+1} - 1}{n+1}.$$
Pour la seconde intégrale, on doit distinguer les cas $n = 1$ et $n \neq 1$.

Pour n = 1, l'intégrale est égale à 0.

Pour
$$n \neq 1$$
, l'intégrale est égale à $\frac{1}{2\pi} \int_0^{\pi} \sin[(n-1)t] dt = \frac{1}{2\pi} \left[-\frac{\cos[(n-1)t]}{n-1} \right]_0^{\pi} = -\frac{1}{2\pi} \frac{(-1)^{n-1} - 1}{n-1} = -\frac{1}{2\pi} \frac{(-1)^{n+1} - 1}{n-1}.$

Donc pour
$$n \neq 1$$
, on a $b_n = -\frac{1}{2\pi} \frac{2n((-1)^{n+1} - 1)^{n+1}}{n^2 - 1}$

Donc pour $n \ne 1$, on a $b_n = -\frac{1}{2\pi} \frac{2n\left((-1)^{n+1} - 1\right)}{n^2 - 1}$ Donc, pour n impair strictement supérieur à 1, on a $b_n = 0$, ce qui est compatible avec le fait que $b_1 = 0$ et pour n pair égal à 2p, on a $b_{2p} = \frac{4p}{\pi(4p^2 - 1)}$.

La série de Fourier de f s'écrit donc :

$$S_f(t) = \frac{\cos(t)}{2} + \sum_{p=1}^{+\infty} \frac{4p}{\pi (4p^2 - 1)} \sin(2pt)$$

Cette fonction étant 2π périodique et de classe C^1 par morceaux sur \mathbb{R} , on peut appliquer le théorème de Dirichlet. La série de Fourier de f en t converge vers f(t) si f est continue en t (donc si $t \in \mathbb{R} \setminus \{n\pi; n \in \mathbb{Z}\}$ et vers $\frac{f(t+0) + f(t-0)}{2}$ n'est pas continue en t. (donc vers $\frac{1}{2}$ si $t \in \{2n\pi; n \in \mathbb{Z}\}$ et vers $-\frac{1}{2}$ si $t\in\{(2n+1)\pi;n\in\mathbb{Z}\}.$

 ${f b.}\;\;$ Cette série est à termes positifs, et son terme général est équivalent au voisinage de $+\infty$ à $\frac{1}{4n^2}$. Il est donc équivalent, à une constante multiplicative près, au terme général d'une série de Riemann convergente.

Donc cette série converge d'après le théorème d'équivalence.

En outre, cette fonction est continue par morceaux et $2 - \pi$ périodique. Ainsi, elle vérifie les hypothèses de l'égalité de Parseval :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(t) \right)^2 \mathrm{d}t = \frac{1}{2} \left(a_1(f) \right)^2 + \frac{1}{2} \sum_{p=1}^{+\infty} \left(b_{2p}(f) \right)^2$$

D'une part, sur] $-\pi$; 0[, on a f(t) = 0 et sur $[0; \pi]$, on a $f(t) = \cos t$ donc $(f(t))^2 = 0$ $]-\pi;0[$ et $(f(t))^2 = \cos^2 t \sin [0;\pi]$ et donc $\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(t))^2 dt = \frac{1}{2\pi} \int_{0}^{\pi} \cos^2 dt$.

On sait que pour tout réel t, on a $\cos(2t) = \cos^2 t - \sin^2 t = 1 - 2\cos^2 t$ donc $\cos^2 t = \frac{1 - \cos(2t)}{2}$.

Donc
$$\frac{1}{2\pi} \int_0^{\pi} \cos^2 dt = \frac{1}{2\pi} \int_0^{\pi} \left(\frac{1 - \cos(2t)}{2} \right) dt = \frac{1}{4\pi} \int_0^{\pi} dt - \frac{1}{4\pi} \int_0^{\pi} \cos(2t) dt$$

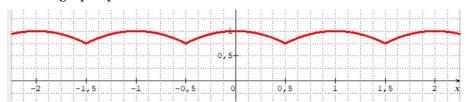
= $\frac{1}{4} - \frac{1}{8} \left[\sin(2t) \right]_0^{\pi} = \frac{1}{4}$.
D'après l'égalité de Parseval, on a donc :

$$\frac{1}{4} = \frac{1}{8} + \frac{16}{2\pi^2} \sum_{p=1}^{+\infty} \frac{p^2}{(4p^2 - 1)^2}$$

soit:

$$\sum_{p=1}^{+\infty} \frac{p^2}{\left(4p^2-1\right)^2} = \frac{\pi^2}{8} \left(\frac{1}{4} - \frac{1}{8}\right) = \frac{\pi^2}{64}$$

3. Représentation graphique :



a. f est continue par morceaux, 1 – périodique et $\omega = 2\pi$. En outre, il semble qu'elle soit continue sur \mathbb{R} .

f est évidemment continue en tout point de $\mathbb{R}\setminus\left\{\frac{1}{2}+k;k\in\mathbb{Z}\right\}$.

Montrons qu'elle est également continue à droite et à gauche en tout point de cet ensemble. Il suffit de montrer qu'elle est continue à gauche en $-\frac{1}{2}$ (la continuité

à droite est évidente), et à droite en $\frac{1}{2}$ (la continuité à gauche est évidente).

Pour
$$t \in \left[-\frac{3}{2}; -\frac{1}{2} \right]$$
, on a $f(t) = 1 - (t+1)^2$ et donc

Pour
$$t \in \left[-\frac{1}{2}; -\frac{1}{2}\right]$$
, on a $f(t) = 1 - (t+1)^{-1}$ et donc $\lim_{t \to -1/2^{-}} f(t) = \lim_{t \to -1/2^{-}} 1 - (t+1)^{2} = \frac{3}{4} = f\left(-\frac{1}{2}\right)$ et donc f est continue à gauche en $-\frac{1}{2}$.

Pour
$$t \in \left[\frac{1}{2}, \frac{3}{2}\right]$$
, on a $f(t) = 1 - (t - 1)^2$ et donc

 $\lim_{t\to 1/2^+} f(t) = \lim_{t\to 1/2^+} 1 - (t-1)^2 = \frac{3}{4} = f\left(\frac{1}{2}\right) \text{ et donc } f \text{ est continue à droite en } \frac{1}{2}.$ Donc f est bien continue sur \mathbb{R} .

Montrons qu'en outre, f est paire.

Pour
$$t \in \left[-\frac{1}{2}; \frac{1}{2}\right]$$
, on a $f(-t) = f(t)$.

Soit $t \in \mathbb{R}$: $\exists k \in \mathbb{Z}$; $t - k \in \left[-\frac{1}{2}; \frac{1}{2} \right]$. Comme f est 1-périodique, on a f(t) = f(t - k).

Comme f est paire sur $\left[-\frac{1}{2}; \frac{1}{2}\right]$, on a f(t-k) = f(-t+k) et enfin comme f est 1-périodique, on a f(-t+k) = f(-t).

Finalement, f(-t) = f(t) et donc f est paire.

Calcul de
$$a_0(f)$$
:

$$a_0(f) = \frac{1}{1} \int_{-1/2}^{1/2} f(t) dt.$$

Sur
$$\left[-\frac{1}{2}; \frac{1}{2}\right]$$
, on a $f(t) = 1 - t^2$ donc $a_0(f) = \int_{-1/2}^{1/2} (1 - t^2) dt = \left[t - \frac{t^3}{3}\right]_{-1/2}^{1/2} = \frac{11}{12}$.

Calcul des $a_n(f)$:

Soit
$$n \in \mathbb{N}^*$$
: $a_n(f) = \frac{2}{1} \int_{-1/2}^{1/2} f(t) \cos(2\pi nt) dt$.

Sur
$$\left[-\frac{1}{2}; \frac{1}{2}\right]$$
, on a $f(t) = 1 - t^2$ donc

$$a_n(f) = 2 \int_{-1/2}^{1/2} (1 - t^2) \cos(2\pi nt) dt = 2 \int_{-1/2}^{1/2} \cos(2\pi nt) dt - 2 \int_{-1/2}^{1/2} t^2 \cos(2\pi nt) dt.$$

La première intégrale se calcule très simplement, elle est égale à 0 et la seconde se calcule par exemple en faisant deux intégrations par parties successives (cf

exemple 4.1) et est égale à $\frac{(-1)^n}{2\pi^2 n^2}$. On a donc $a_n(f) = \frac{(-1)^{n+1}}{\pi^2 n^2}$

On a donc
$$a_n(f) = \frac{(-1)^{n+1}}{\pi^2 n^2}$$

Calcul des $b_n(f)$:

Soit $n \in \mathbb{N}^*$: f étant paire, on a $b_n(f) = 0$.

La série de Fourier de f s'écrit donc :

$$S_f(t) = \frac{11}{12} + \frac{1}{\pi^2} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} \cos(2\pi nt)$$

Cette fonction étant 2π périodique et de classe C^1 par morceaux et continue sur \mathbb{R} , on peut appliquer le théorème de Dirichlet. La série de Fourier de f en tconverge vers f(t) pour tout réel t

b. Ces deux séries sont des séries de Riemann convergentes.

Pour calculer la première série, on pose $t = \frac{1}{2}$: la série de Fourier de f en t s'écrit

$$S_f(t) = \frac{11}{12} + \frac{1}{\pi^2} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} \cos(n\pi) = \frac{11}{12} + \frac{1}{\pi^2} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} (-1)^n = \frac{11}{12} - \frac{1}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

On a donc
$$f\left(\frac{1}{2}\right) = 1 - \left(\frac{1}{2} - 1\right)^2 = \frac{3}{4} = \frac{11}{12} - \frac{1}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \pi^2 \left(\frac{11}{12} - \frac{3}{4} \right) = \frac{\pi^2}{6}$$

Pour la seconde série, on applique l'égalité de Parseval à f, qui est bien continue par morceaux sur $\mathbb R$ donc qui vérifie ses hypothèses, et on a :

$$\frac{1}{1} \int_{-1/2}^{1/2} (f(t))^2 dt = \left(\frac{11}{12}\right)^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{(-1)^{n+1}}{\pi^2 n^2}\right)^2.$$

D'une part, on a $f(t) = 1 - t^2 \operatorname{sur} \left[-\frac{1}{2}; \frac{1}{2} \right] \operatorname{donc} (f(t))^2 = (1 - t^2)^2 = 1 - 2t^2 + t^4 \operatorname{sur}$

$$\left[-\frac{1}{2}; \frac{1}{2}\right] \text{ et donc } \int_{-1/2}^{1/2} \left(f(t)\right)^2 dt = \left[t - \frac{2}{3}t^3 + \frac{t^5}{5}\right]_{-1/2}^{1/2} = \frac{203}{240}.$$

On a donc
$$\frac{203}{240} = \frac{121}{144} + \frac{1}{2\pi^4} \sum_{n=1}^{+\infty} \frac{1}{n^4}$$

Soit $\sum_{n=1}^{+\infty} \frac{1}{n^4} = 2\pi^4 \left(\frac{203}{240} = \frac{121}{144} \right)$ et donc :

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

4. a. Soit $n \ge 1$. Par linéarité de l'intégrale, le résultat est immédiat. Vérifier que $a_n(f) = c_n(f) + c_{-n}(f)$ et que $b_n(f) = i(c_n(f) - c_{-n}(f))$.

- **b.** D'après la question précédente, on a, pour $n \ge 1$, $c_n(f) = a_n(f) \mathrm{i} b_n(f)$ et $c_{-n}(f) = a_n(f) = \mathrm{i} b_n(f)$ donc $\left| c_n(f) \right|^2 + \left| c_{-n}(f) \right|^2 = 2 \left(a_n(f)^2 + b_n(f)^2 \right)$. f vérifiant les hypothèses de l'égalité de Parseval, on sait que les séries de terme général $a_n(f)^2$ et $b_n(f)^2$ sont convergentes, il en est donc de même de la série de terme général $\left(a_n(f)^2 + b_n(f)^2 \right)$. Donc la série de terme général $\left| c_n(f) \right|^2 + \left| c_{-n}(f) \right|^2$ converge.
- **c.** Encore une fois en utilisant la question précédente, on a $\sum_{n=-\infty}^{+\infty} \left| c_n(f) \right|^2 = a_0(f)^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n(f)^2 + b_n(f)^2 \right)$ et donc, d'après l'égalité de Portografie.

$$\sum_{n=-\infty}^{+\infty} \left| c_n(f) \right|^2 = \frac{1}{T} \int_0^T \left(f(t) \right)^2 \mathrm{d}t.$$