TD Chapitre 7 : Probas dénombrables

Exercice 1

- 1. Pour $n \in \mathbb{Z} \{0, -1\}$, on a bien P(X = n) > 0. On doit vérifier que $P(\Omega) = 1$, c'est-à-dire que $\sum_{n \in \mathbb{Z} - \{0, -1\}} P(X = n) = 1$.
 - supposons n > 0: la série à termes positifs de terme général $\frac{1}{2n(n+1)}$ est convergente d'après le théorème d'équivalence. En effet, $\frac{1}{2n(n+1)} \sim \frac{1}{2} \times \frac{1}{n^2}$ et $\frac{1}{n^2}$ est le terme général d'une série de Riemann convergente.

Soit
$$k \ge 1$$
: on pose $S_k = \sum_{n=1}^k \frac{1}{2n(n+1)} = \frac{1}{2} \sum_{n=1}^k \frac{1}{n(n+1)}$.
Or, pour tout $n > 0$, on a $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ donc $S_k = \frac{1}{2} \left(\sum_{n=1}^k \frac{1}{n} - \sum_{n=1}^k \frac{1}{n+1} \right) = \frac{1}{2} \left(\sum_{n=1}^k \frac{1}{n} - \sum_{n=2}^{k+1} \frac{1}{n} \right) = \frac{1}{2} \left(1 - \frac{1}{n+1} \right)$
On a donc $\lim_{k \to +\infty} S_k = \frac{1}{2}$.

— supposons n < -1: la série à termes positifs de terme général $\frac{1}{2n(n+1)}$ est convergente d'après le théorème d'équivalence. En effet, $\frac{1}{2n(n+1)} \sim \frac{1}{2} \times \frac{1}{n^2}$ et $\frac{1}{n^2}$ est le terme général d'une série de Riemann convergente.

Soit
$$k \ge 1$$
: on pose $S_k = \sum_{n=-2}^k \frac{1}{2n(n+1)} = \frac{1}{2} \sum_{n=-2}^k \frac{1}{n(n+1)}$.
Or, pour tout $n < -1$, on a $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ donc
$$S_k = \frac{1}{2} \left(\sum_{n=-2}^k \frac{1}{n} - \sum_{n=-2}^k \frac{1}{n+1} \right) = \frac{1}{2} \left(\sum_{n=-2}^k \frac{1}{n} - \sum_{n=-1}^{k+1} \frac{1}{n} \right) = \frac{1}{2} \left(1 - \frac{1}{n+1} \right)$$
On a donc, $\lim_{n \to \infty} S_k = \frac{1}{n}$.

On a donc $\lim_{k\to -\infty} S_k = \frac{1}{2}$. Ces deux séries étant convergentes, leur somme est convergente et converge vers 1, ce qu'on voulait démontrer.

2. On doit étudier l'absolue convergence de la série de terme général

$$nP(X = n) = \frac{1}{2|n+1|}.$$

Pour n > 0, le terme général de cette série à termes positifs est équivalent à $\frac{1}{2} \times \frac{1}{n+1}$ où $\frac{1}{n+1}$ est le terme général de la série harmonique divergente. Donc X n'est pas d'espérance finie.

Exercice 2

1. Pour
$$k = 1$$
, on a $P(X = 1) = \frac{1}{2}$.
Pour $k > 1$, on a $P(X = k) = P(X \le k) - P(X \le k - 1) = \frac{2}{k^2} - \frac{2}{(k+1)^2} = \frac{2(k+1)^2 - k^2}{k^2(k+1)^2}$.
Donc $P(X = k) = \frac{2(2k+1)}{k^2(k+1)^2}$.

- 2. On étudie l'absolue convergence de la série de terme général $kP(X=k)=\frac{2(2k+1)}{k(k+1)^2} \sim \frac{4}{k^2}$ qui est le terme général d'une série convergente. Donc X est d'espérance finie.
- 3. De même, on étudie l'absolue convergence de la série de terme général $k^2P(X=k)=\frac{2(2k+1)}{(k+1)^2} \underset{+\infty}{\sim} \frac{4}{k} \text{ qui est le terme général d'une série divergente.}$ Donc X^2 n'est pas d'espérance finie.

Exercice 3

1. Pour $k \in \mathbb{N}^*$, on a bien P(X = k) > 0. On doit avoir que $P(\Omega) = 1$, c'est-à-dire que la série de terme général $\frac{1}{k^{\alpha}}$ doit être convergente, donc on doit avoir $\alpha > 1$.

En outre, il faut
$$\sum_{k>0} P(X=k) = 1$$
, c'est à dire $\frac{1}{C} = \sum_{k>0} \frac{1}{k^{\alpha}}$.

2. De même, on montre facilement que X est d'espérance finie si et seulement si $\alpha > 2$, et X^2 est d'espérance finie si et seulement si $\alpha > 3$.

Exercice 4

1. Le hamster n'étant pas doué d'apprentissage, X suit une loi géométrique de paramètre $\frac{1}{5}$ (rang d'apparition du premier succès dans la répétition d'épreuves de Bernoulli indépendantes de paramètre commun $\frac{1}{5}$.

On en déduit que pour tout entier n strictement positif, on a $P(X = n) = \frac{1}{5} \times \frac{4}{5}^{n-1}$. On en déduit facilement les probabilités demandées :

a.
$$P(X=1) = \frac{4}{5}$$
.

b.
$$P(X=3) = \frac{15}{125}$$
.

c.
$$P(X=7) = \frac{4096}{78125}$$
.

2. a. Le hamster peut sortir au premier, deuxième, ..., cinquième essai.Donc $X(\Omega) = \{1, 2, 3, 4, 5\}$.

Pour $n \in X(\Omega)$, on appelle A_n l'évènement "la hamster choisit la bonne porte à la n-ième tentative.

- On a
$$P(X = 1) = P(A_1) = \frac{1}{5}$$
.
- $P(X = 2) = P(\overline{A_1} \cap A_2) = P_{\overline{A_1}}(A_2) \times P(\overline{A_1}) = \frac{1}{4} \times \frac{4}{5} = \frac{1}{5}$.
- $P(X = 3) = P(\overline{A_1} \cap \overline{A_2} \cap A_3) = P_{\overline{A_1} \cap \overline{A_2}}(A_3) \times P(\overline{A_1} \cap \overline{A_2})$
= $P_{\overline{A_1} \cap \overline{A_2}}(A_3) \times P_{\overline{A_1}}(\overline{A_2}) \times P(\overline{A_1}) = \frac{1}{3} \times \frac{3}{4} \times \frac{4}{5} = \frac{1}{5}$

— On montre de façon analogue que $P(X = 4) = P(X = 5) = \frac{1}{5}$. *X* suit donc une loi uniforme de paramètre 5.

- **b.** D'après le cours, on a $E(X) = \frac{5+1}{2} = 3$. En moyenne, le hamster sort au bout de trois essais.
- **c.** De même, on a $V(X) = \frac{5^2 1}{12} = 2$.

Exercice 5

Soit X une variable aléatoire qui suit une loi géométrique de paramètre p, et n et k deux entiers strictement positifs.

entiers strictement positifs. On a
$$P_{X>n}(X>n+k)=\frac{P\left[(X>n+k)\cap(X>n)\right]}{P(X>n)}=\frac{P\left[(X>n+k)\right]}{P(X>n)}$$
 puisque l'évènement $X>n$ est inclus dans l'évènement $X>n+k$.

$$A > n$$
 est frictus dans i eventement $X > n + k$.

$$P(X > n + k) = 1 - P(X \le n + k) = 1 - \sum_{i=1}^{n+k} P(X = i) = 1 - \sum_{i=1}^{n+k} p(1-p)^{i-1} = 1 - p \sum_{i=0}^{n+k-1} (1-p)^i$$

$$=1-p\times\frac{1-(1-p)^{n+k}}{1-(1-p)}=(1-p)^{n+k}$$

On montre de même que
$$P(X > n) = (1 - p)^n$$
 et $P(X > k) = (1 - p)^k$.
On a donc $P_{X > n}(X > n + k) = \frac{(1 - p)^{n + k}}{(1 - p)^n} = (1 - p)^k = P(X > k)$.

Donc *X* vérifie la propriété d'absence de mémoire suivante :

$$P_{X>n}(X>n+k) = P(X>k)$$

Cela signifie que la probabilité que le premier succès apparaisse après k tentatives est la même que la probabilité que le premier succès apparaisse après n + k tentatives, à condition que les n premières tentatives aient été des échecs : il s'agit donc bien d'absence de mémoire.

Exercice 6

1. X compte le nombre de "succès" (la pièce prélevée est défectueuse) dans une succession de n = 80 épreuves de Bernoulli indépendantes et de même paramètre $p = \frac{5}{1000} = \frac{1}{200}$

Donc X suit une loi binômiale $\mathscr{B}\left(80, \frac{1}{200}\right)$.

- $\mathbf{2}$. D'après le cours on peut l'approximer par une loi de Poisson Y de paramètre $80 \times \frac{1}{200} = \frac{2}{5}$
- 3. **a.** $P(Y=0) = e^{-2/5}$.
 - **b.** $P(Y=2) = e^{-2/5} \times \frac{(2/5)^2}{2!}$.
 - c. $P(Y > 2) = 1 P(Y \le 2) = 1 P(Y = 0) P(Y = 1) P(Y = 2) = 1 e^{-2/5} \left(1 + \frac{2}{5} + \frac{(2/5)^2}{2!}\right)$.
 - **d.** $P(Y < 5) = \sum_{k=0}^{4} P(Y = k) = e^{-2/5} \sum_{k=0}^{4} \frac{(2/5)^k}{k!}$.

Exercice 7

Soit X la variable aléatoire qui compte le nombre de passagers ne se présentant pas à l'embarquement. X compte le nombre de "succès" (le voyageur ne se présente pas) dans une succession de n=103 expériences aléatoires de Bernoulli indépendantes de même paramètre 0,03.

Donc X suit une loi binômiale $\mathcal{B}\left(103,\frac{3}{100}\right)$. La probabilité d'être en surbooking est donc égale à $P(X=0)+P(X=1)+P(X=2)=\begin{pmatrix} 103\\0 \end{pmatrix}0,97^{103}+\begin{pmatrix} 103\\1 \end{pmatrix}0,03\times0,97^{102}+\begin{pmatrix} 103\\2 \end{pmatrix}0,03^2\times0,97^{101}=0,3997$ arrondi à 10^{-4} .

Exercice 8

On appelle X la variable aléatoire qui compte le nombre de rhumes attrapés par l'individu dans l'hiver, et B l'évènement "Le médicament lui a été bénéfique".

On cherche donc la probabilité conditionnelle $P_{(X=2)}(B) = \frac{P(B \cap (X=2))}{P(X=2)}$ L'évènement $(X=2) \cap B$ peut être traduit par "Le médicament a été bénéf

L'évènement $(X = 2) \cap B$ peut être traduit par "Le médicament a été bénéfique et l'individu a attrapé deux rhumes". Sa probabilité est donc égale à $0.75 \times e^{-3} \times \frac{3^2}{2!} = 0.168$ arrondi à 10^{-3} .

Le système $\{B, \overline{B}\}$ est une partition de l'univers. En utilisant la formule des probabilités totales, on a :

$$P(X=2) = P(B) \times P_B(X=2) + P(\overline{B}) \times P_{\overline{B}}(X=2)$$

Donc
$$P(X = 2) = 0.75 \times e^{-3} \times \frac{3^2}{2!} + 0.25 \times e^{-5} \times \frac{5^2}{2!} = 0.189$$
 arrondi à 10^{-3} .
On peut donc dire que la probabilité que le médicament lui ait été bénéfique est égale à

On peut donc dire que la probabilité que le médicament lui ait été bénéfique est égale à $\frac{0,168}{0,189} = 0,889$ arrondi à 10^{-3} .

Exercice 9

Soit
$$Y = \frac{1}{X+1}$$
: $Y(\Omega) = \left\{ \frac{1}{k+1}; k \ge 1 \right\} = \left\{ \frac{1}{k}; k \ge 2 \right\}$ et pour tour $k \ge 2$, on a $P\left(Y = \frac{1}{k}\right) = P(X = k-1) = p(1-p)^{k-2}$.

On doit montrer que la série de terme général $kP(Y=k) = \frac{p(1-p)^{k-2}}{k}$ est absolument convergente.

Cette série est à termes positifs donc on peut étudier sa convergence. On a 0 < 1 - p < 1 et d'après les théorèmes de comparaison, on a $\lim_{k \to -\infty} k^3 (1-p)^{k-2} = 0$.

Donc, pour k assez grand, on a $k^3(1-p)^{k-2} < 1$ donc $k(1-p)^{k-2} < \frac{1}{k^2}$ qui est le terme général d'une série de Riemann convergente.

La série est donc convergente d'après le critère de comparaison.

Pour tout réel *x* de] – 1,1[, on a
$$\sum_{k=0}^{+\infty} x^n = \frac{1}{1-x}$$
.

D'après les théorèmes usuels des séries entières, cette série est intégrable sur] – 1,1[et on a :

$$-\ln(1-x) = \sum_{k=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

Pour x = 1 - p, on a donc $\sum_{k=1}^{+\infty} \frac{(1-p)^k}{k} = -\ln(p)$ et $\sum_{k=2}^{+\infty} \frac{(1-p)^k}{k} = -\ln(p) - (1-p)$ et:

$$\sum_{k=2}^{+\infty} \frac{(1-p)^{k-2}}{k} = -\frac{\ln(p)}{(1-p)^2} - \frac{1}{1-p} \text{ et finalement, } E(Y) - = p \left(\frac{\ln(p)}{(1-p)^2} + \frac{1}{1-p} \right).$$