TD Chapitre 11: Espaces pré-hilbertiens réels

Exercice 1

Dans \mathbb{R}^3 , on considère la base canonique (e_1, e_2, e_3) et les vecteurs $u = 3e_1 - 2e_2$, $v = e_1 + e_2 + e_3$ et $w = e_2 - e_3$.

- **1**. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Orthonormaliser cette base pour le produit scalaire canonique.
- **3**. Soit φ l'application définie de $(\mathbb{R}^3)^2$ dans \mathbb{R} par :

$$\forall x = (x_1, x_2, x_3) \text{ et } y = (y_1, y_2, y_3), \quad \varphi(x, y) = x_1 y_1 + (x_1 - x_2)(y_1 - y_2) + (x_2 + x_3)(y_2 + y_3)$$

- **a.** Montrer que φ est un produit scalaire de \mathbb{R}^3 .
- **b.** Orthonormaliser la base canonique pour le produit scalaire φ .

Exercice 2

On définit l'application φ de $(\mathbb{R}_3[X])^2$ dans \mathbb{R} par :

$$\forall (P,Q) \in \mathbb{R}_3[X]^2, \quad \varphi(P,Q) = \sum_{i=0}^3 P(i)Q(i)$$

- **1**. Montrer que φ est un produit scalaire sur $\mathbb{R}_3[X]$.
- **2**. Déterminer une base de $\mathbb{R}_2[X]$ orthonormale pour φ .

Exercice 3 *

Résoudre dans \mathbb{R}^n le système :

$$\begin{cases} x_1 + x_2 + \dots + x_n = n \\ x_1^2 + x_2^2 + \dots + x_n^2 = n \end{cases}$$

Exercice 4

Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale sur le plan F d'équation cartésienne $x_1 + 2x_2 - 3x_3 = 0$.

Exercice 5

On munit $\mathcal{M}_2(\mathbb{R})$ du produit scalaire $\langle .|. \rangle$ défini par $\langle A|B \rangle = \operatorname{Tr}({}^tAB)$. On note $\mathcal{D}_2(\mathbb{R})$ l'ensemble des matrices diagonales de $\mathcal{M}_2(\mathbb{R})$.

- 1. Déterminer $\mathcal{D}_2(\mathbb{R})^{\perp}$.
- **2**. Soit $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Déterminer la projection orthogonale de A sur $\mathcal{D}_2(\mathbb{R})$.

Exercice 6

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ l'ensemble des fonctions continues sur [-1,1] que l'on munit du produit scalaire défini par : $\langle f|g\rangle = \int_{-1}^{1} f(t)g(t)dt$.

- 1. Soit *P* l'ensemble des fonctions paires de *E* et *I* l'ensemble des fonctions impaires de *E*.
 - **a.** Justifier que $P \subset I^{\perp}$.
 - **b.** Montrer que *I* et *P* sont supplémentaires dans *E*.
 - **c.** En déduire que $P = I^{\perp}$.
- 2. Soit f la fonction de E définie par $f(x) = e^x$. Déterminer le projeté orthogonal de f sur I.

Exercice 7

Calculer le minimum de la fonction f définie de \mathbb{R}^3 dans \mathbb{R} par :

$$f(a,b,c) = \int_0^{+\infty} (x^3 + ax^2 + bx + c)^2 e^{-2x} dx$$