Chapitre 10. Lois élémentaires dans un circuit électrique Exemples de cours - corrigé

Exemple n° 1 : Conventions récepteur et générateur

1. Du pôle + vers le pôle -

2. $U_{PN} = V_P - V_N > 0$

La flèche représentant U_{BP} est dans le même sens que le courant (de P vers B) donc en convention générateur ; or la lampe est un récepteur donc $U_{PB} > 0$ et $U_{BP} < 0$

La flèche représentant UAB est dans le même sens que le courant ; or R est un récepteur donc U_{AB} < 0 et $U_{BA} > 0$.

3.

4. $Pe = U_{PN} \times I > 0$ (convention générateur)

5. $Pe_L = U_{PB} \times I > 0$ (convention récepteur)

Exemple n°2: Etude d'un circuit en série

1.

2. Loi des mailles : $E = Um + Ua + U_R$ donc $U_R = E - Um - Ua$ $U_R = 0.8 V$ 3. Loi d'Ohm aux bornes de R : $U_R = R . I$ donc $I = U_R / R$ I = 0.2 A

En série, l'intensité du courant est la même dans chaque composant donc I = 0,2 A dans l'ampoule et le moteur.

4. Puissance délivrée par le générateur : $P_E = E . I$ $P_E = 1,2 W$ Puissance consommée par le moteur : Pm = Um . I Pa = 0,6 W Puissance consommée par l'ampoule : Pa = Ua . I Pm = 0,44 W

Puissance consommée par la résistance : $P_R = U_R . I = R . I^2$ $P_R = 0,16 W$

On retrouve que P_E = Pm + Pa + P_R : la puissance fournie par le générateur est dissipée dans les composants récepteurs.

Exemple n°3: Pont diviseur de tension

1. $U_1 = R_1 Iet$ $U_2 = R_2 I$

2. $U = U_1 + U_2 = R_1 I + R_2 I$ donc $I = U / (R_1 + R_2)$

3. $U_2 = R_2 I = U . R_2 / (R_1 + R_2)$

Exemple n°4: Branchement d'un appareil de mesure

- 1. L'ampèremètre est placé en série et le voltmètre en parallèle.
- U_{AB} = R. I donc la caractéristique est une droite passant par l'origine.
- 3. En utilisant le pont diviseur de tension, on peut écrire : $U_{amp} = U_{AB} \times r_A / (r_A + R)$
- 4. On souhaite que l'ampèremètre se comporte comme un fil donc que la la tension à ses bornes soit nulle : Il faut donc que r_A tende vers 0, qu'elle soit la plus faible possible.
- 5. $I = I_R + I_V$ avec $I_V = U / R_V$
- 6. On souhaite que le voltmètre ne perturbe pas le circuit donc qu'il se comporte comme un interrupteur ouvert : $I_V = 0$ Il faut donc que R_V tend vers l'infini, qu'elle soit la plus grande possible.